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Abstract

Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Anterior cingulate cortex (ACC) and striatum (STR) contain neurons encoding not only the

expected values of actions, but also the value of stimulus features irrespective of actions.

Values about stimulus features in ACC or STR might contribute to adaptive behavior by

guiding fixational information sampling and biasing choices toward relevant objects, but

they might also have indirect motivational functions by enabling subjects to estimate the

value of putting effort into choosing objects. Here, we tested these possibilities by modulat-

ing neuronal activity in ACC and STR of nonhuman primates using transcranial ultrasound

stimulation while subjects learned the relevance of objects in situations with varying motiva-

tional and cognitive demands. Motivational demand was indexed by varying gains and

losses during learning, while cognitive demand was varied by increasing the uncertainty

about which object features could be relevant during learning. We found that ultrasound

stimulation of the ACC, but not the STR, reduced learning efficiency and prolonged informa-

tion sampling when the task required averting losses and motivational demands were high.

Reduced learning efficiency was particularly evident at higher cognitive demands and when

subjects experienced loss of already attained tokens. These results suggest that the ACC

supports flexible learning of feature values when loss experiences impose a motivational

challenge and when uncertainty about the relevance of objects is high. Taken together,

these findings provide causal evidence that the ACC facilitates resource allocation and

improves visual information sampling during adaptive behavior.

Introduction

It is well established that the anterior cingulate cortex (ACC) and the anterior striatum con-

tribute to flexible learning [1–4]. Widespread lesions of either structure can lead to
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nonadaptive behavior. When tasks require subjects to adjust choice strategies, lesions in the

ACC cause subjects to shift away from a rewarding strategy even after having obtained reward

for a choice [5] and reduce the ability to use error feedback to improve behavior [6–8]. Lesions

in the striatum likewise reduce the ability to use negative error feedback to adjust choice strate-

gies, which leads to perseveration of non-rewarded choices [9], or inconsistent switching to

alternative options after errors [10]. A common interpretation of these lesion effects is that

both structures are necessary for integrating the outcome of recent choices to update the

expected values of possible choice options. According to this view, the ACC and striatum keep

track of reward outcomes of available choice options in a given task environment.

However, it has remained elusive what type of reward outcome information is tracked in

these structures and whether outcome information in ACC or the striatum affects learning

even when it is not associated with specific actions. In many learning tasks used to study ACC

or striatum functions, subjects learned associating reward outcomes with the direction of a

saccadic eye movement or the direction of a manual movement [11–14]. Succeeding with

these tasks requires computing probabilities of action-reward associations. However, recent

studies have documented neurons in ACC and striatum that not only tracked action-reward

association probabilities, but also the expected reward value of specific features of chosen

objects [11,15–19]. Neuronal information about the value object features emerged slightly ear-

lier in ACC than in striatum [15,16,19] and rapidly synchronized between both structures sug-

gesting they are available across the frontostriatal network at similar times [20].

These findings suggest that the ACC or striatum may be functionally important to learn

expected values of objects’ specific visual features and thereby mediate information-seeking

behavior and visual attention [17,21–25]. There are at least 3 possible ways how feature-spe-

cific value information in these areas may support flexible learning. A first possibility is that

either of these brain areas uses feature-specific value information for credit-assigning reward

outcomes to goal-relevant object features. Such a credit assignment process is necessary during

learning to reduce uncertainty about which features are most relevant in a given environment.

Support for this suggestion comes from studies reporting of neurons in ACC that show stron-

ger encoding of task variables in situations with higher uncertainty [26], respond to cues

reducing uncertainties about outcomes [27], and form subpopulations encoding uncertain

outcomes [16]. These prior studies predict that ACC or striatum will be important for learning

values of object features when there is high uncertainty about the reward value of object

features.

A second possibility is that the ACC or striatum uses feature-specific value information to

determine whether subjects should continue with a current choice strategy or switch to a new

strategy [28,29]. According to this framework, the ACC’s major role is to compute, track, and

compare an ongoing choice value for going on with similar choices or switching to alternative

choice options. This view predicts that when errors accumulate during learning, the estimated

choice value for continuing similar choices is reduced relative to alternatives and ACC or stria-

tum will activate to either directly modify choice behavior [28,29] or indirectly affect choices

by guiding attention and information sampling away from recently chosen objects and toward

other, potentially more rewarding objects [25].

A third possible route for value information in ACC and striatum to affect behavior

assumes that information about the value of object features is not used to compute a choice

value, but a motivational value for the subject that indicates whether it is worth to put contin-

ued effort into finding the most valuable object in a given environment [4,30]. According to

such an effort-control framework, value signals across the ACC-striatum axis are used to com-

pute the value of controlling task performance [31]. Similar to the choice-value framework,

this motivational value framework predicts that ACC and striatum should become more
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important for learning when the number of conflicting features increases. While in the choice-

value framework, an increase in conflicting features will evoke more ACC activity by increas-

ing the number of comparisons between an ongoing choice value and the value of the other

available options, in the effort-control framework, more feature conflict with the same motiva-

tional payoff requires more ACC activity to decide whether it is worth to put effort in the task

or not [29,30]. Key motivational factors determining whether subjects put more effort into

learning even difficult problems are the amount of reward that can be gained or the amount of

punishment or loss that can be avoided by putting effort in the task. Support for suggesting an

important role of the ACC to mediate how incentives and disincentives affect learning comes

from studies showing ACC neurons responding vigorously to negative outcomes such as

errors [32], respond to negatively valenced stimuli or events irrespective of error outcomes

[33–35], and that fire stronger when the subject anticipates aversive events [27]. These insights

suggest that the ACC and possibly the striatum will be relevant for learning particularly when

it involves averting punishment or loss.

Here, we set up an experiment to test the relative roles of cognitive and motivational contri-

butions of the ACC and striatum for the flexible learning of feature values. We adopted a tran-

scranial ultrasound stimulation (TUS) protocol to temporarily modulate neuronal activity in

the ACC or the striatum of rhesus monkeys while they learned values of object features

through trial-and-error. The task independently varied cognitive load by varying the number

of unrewarded features of objects and motivational context by varying the amount of gains or

losses subjects could receive for successful and erroneous task performance (Fig 1A and 1B).

Subjects learned a feature-reward rule by choosing 1 of 3 objects that varied in features of only

1 dimension (low cognitive load, e.g., different shapes), or in features of 2 or 3 dimensions

(high cognitive load, e.g., varying shapes, surface patterns, and arm types) (Fig 1D). Indepen-

dent of cognitive load, we varied how motivationally challenging task performance was by

altering whether the learning context was a pure gain-only context or a mixed gain-loss con-

text. In the gain-only contexts, subjects received 3 tokens for correct choices, while in the gain-
loss contexts, subjects received 2 tokens for correct choices and lost 1 already attained token

when choosing objects with non-rewarded features (Fig 1A–1C). Such a loss experience has

been reported in previous studies to impose a motivational conflict [36], inferred also from

vigilance responses triggered by experiencing losses [37]. The task required monkeys to collect

5 visual tokens before they were cashed out for fluid rewards.

With this design, we found that sonication of the ACC, but not the anterior striatum, with

TUS led to a learning deficit when subjects experienced losses. This loss-triggered deficit was

accompanied by inefficient information sampling and was most pronounced at high cognitive

load.

Results

We applied transcranial focused ultrasound (TUS) to modulate neural activity in ACC (area

24) or anterior striatum (STR, head of the caudate nucleus) in 2 monkeys in separate learning

sessions by adopting the same TUS protocol as in [38,39]. The sonication protocol imposed an

approximately 6-mm wide/40-mm tall sonication region that has been shown previously to

alter behavior in foraging tasks [40] to reduce functional connectivity of the sonicated area in

macaques [38] and in in vitro preparations to modulate neuronal excitability to external inputs

[41]. We provide detailed acoustic simulations of the ultrasound pressure dispersion around

the target brain areas, the anatomical sub-millimeter targeting precision of TUS, and the vali-

dation of the applied ultrasound power through real-time power monitoring during the exper-

iment in S3 Fig. We bilaterally sonicated or sham-sonicated the ACC or the STR in individual
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https://doi.org/10.1371/journal.pbio.3001785.g001
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sessions immediately after monkeys had completed the first 6 learning blocks. We performed

12 experimental sessions for each TUS or sham condition in each of the 2 brain areas ACC or

STR (a total of 48 sessions) with each of the 2 monkeys. Following the sonication procedure,

monkeys resumed the task and proceeded on average for 23.6 (±4 SE) learning blocks (monkey

W: 20.5 ± 4; monkey I: 26.5 ± 4) (Fig 1E).

Across learning blocks, monkeys reached the learning criterion (�80% correct choices over

12 trials) systematically later in blocks with high cognitive load (linear mixed effect (LME)

model with a main effect of cognitive load, p< 0.001; Figs 1F and S1A–S1C). Both monkeys

also showed longer foveation durations onto the objects prior to making a choice when the

cognitive load was high (LME main effect of cognitive load, p< 0.001; Figs 1G and S1D and

S1E). Longer foveation durations index more extensive information sampling of object fea-

tures at higher cognitive load. We defined information sampling as the duration monkeys fix-

ated objects prior to the last fixation in a trial that was used by the subjects to choose an object.

This metric indexes how long information was processed about feature values of the objects

prior to committing to a choice. Monkeys also increased information sampling, significantly

slowed learning, and showed reduced plateau performance (S2A–S2C Fig) in blocks with

gains and losses (gain-loss contexts) compared to blocks with only gains (gain-only contexts)

(Figs 1G and S2D and S2E; LME main effect of motivational context, p< 0.001).

TUS in ACC (ACC-TUS) but not sham-TUS in ACC (ACC-Sham) or TUS in striatum

(STR-TUS) or sham-TUS in the striatum (STR-Sham) (Fig 2A) changed this behavioral pat-

tern. TUS conditions showed a significant interaction with motivational context with

ACC-TUS selectively slowing learning in the gain-loss contexts compared to the gain-only

contexts (LME interaction of TUS condition and motivational context, t = 2.67, p = 0.007)

(Figs 2B and S4A and S4B and S1 Table). ACC-TUS increased the number of trials needed to

reach the learning criterion of 80% performance to 14.7 ± 0.8 trials (monkey W/I: 14.3 ± 1.2/

15 ± 1.2) relative to the pre-TUS baseline (trials to criterion: 10.7 ± 1.4; monkey W/I: 9.9 ± 2.3/

11.4 ± 1.8) (Wilcoxon test, p = 0.049; Figs 2B and S4C and S2D). The learning speed with

ACC-TUS in the gain-loss context was significantly slower than in other TUS conditions

(Kruskal–Wallis test, p = 0.003), ACC-Sham (pairwise Wilcoxon test, FDR multiple compari-

son corrected for dependent samples, p = 0.019), and to the conditions STR-TUS and

STR-Sham (pairwise Wilcoxon test, FDR multiple comparison corrected for dependent sam-

ples, p = 0.019, p = 0.003) (Fig 2B). This effect interacted with cognitive load. The slower learn-

ing after ACC-TUS in the gain-loss condition was stronger when cognitive load was

intermediate or high, i.e., in conditions with 2 or 3 distracting feature dimensions (random

permutation, p< 0.05; LME 3-way interaction TUS condition, cognitive load, and motiva-

tional context, t = −2.8, p = 0.004) (Figs 3C and 3D and S5A and S2 Table). TUS did not affect

learning in the gain-only contexts even at high cognitive load (Kruskal–Wallis test, p = 0.933)

(Figs 3C and 3D and S5B).

TUS conditions showed a significant interaction with motivational conditions on informa-

tion sampling (LME, t = −4.03, p< 0.001). The slower learning in the gain-loss context after

ACC-TUS was accompanied by prolonged information sampling compared to the pre-TUS

baseline (ACC-TUS information sampling: 234 ± 6 ms monkey W/I: 230 ± 6/237 ± 7 ms, pre-

TUS information sampling: 209 ± 11 ms monkey W/I: 197 ± 16/221 ± 11 ms; Wilcoxon test,

p = 0.016) and compared to STR-TUS (Kruskal–Wallis test, p = 0.036; pairwise Wilcoxon test,

FDR multiple comparison corrected for dependent samples, p = 0.03) (Figs 3A and S6A and

S6C). Fixational information sampling in the gain-only context did not vary between TUS

conditions (Kruskal–Wallis test, p = 0.55) (Figs 3B and S6B and S6D; for detailed information

about the distribution of fixational information sampling and its bootstrap sampling distribu-

tions for different motivational contexts, cognitive load, and TUS conditions, see S7 Fig).
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Once subjects reached the learning criterion in a learning context, they could exploit the

learned feature rule until the block changed to a new feature rule after approximately 30 to 55

trials. During this period, they showed overall high plateau performance, which was signifi-

cantly lower in the gain-loss context (87% ± 0.07) than the gain-only contexts (90% ± 0.05,
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Fig 3. TUS effect on fixational information sampling and behavioral adjustment after gains and losses. (A,B)

Information sampling (the duration of fixating objects prior to choosing an object) is increased with TUS in ACC in

gain-loss (A) but not gain-only (B) learning context. (C, D) TUS in ACC reduced post-learning plateau accuracy in

gain-loss contexts (C) but not in gain-only contexts (D) (LMEs, p = 0.04) (see S2 Table). With FDR correction, this

accuracy effect was significant at the session level, but not at the block level, indicating a low effect size (S10E Fig and

S1 Table). (E) The accuracy was overall reduced with TUS in ACC in the 5 trials after experiencing a token loss in the

gain-loss context (random permutation, p< 0.05). (F) GTI (x-axis) measures the signed average of tokens gained and

lost in the preceding trials. TUS in ACC reduced the performance accuracy (y-axis) when monkeys had lost more

tokens in the near past (negative GTI) (random permutation, p< 0.05). Data indicate the mean and the standard error

of the mean. Accuracy on the trial level is normalized by the mean and standard deviation of the accuracy in the

baseline (the first 6 blocks prior to the TUS) in the same TUS sessions. Black asterisks show significant main effect of
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LME main effect of motivational context, t = −3.95, p = 0.001) (S2C Fig). ACC-TUS exacer-

bated this performance drop in the gain-loss block, leading to significantly lower plateau accu-

racy compared to the pre-TUS baseline condition and compared to other TUS conditions in

the gain-loss learning context (LME interaction of TUS condition, motivational context and

pre/post sonication, t = −2.05, p = 0.04; Figs 3C and S6E), but not in the gain-only learning

context (Kruskal–Wallis test, p = 0.8) (Figs 3D and S6F). The mean plateau accuracy was

reduced to 84.5% ± 1.4 (monkey W/I: 85% ± 1.4/84% ± 1.4) relative to the pre-TUS baseline

(plateau accuracy: 88 ± 1.8; monkey W/I: 88 ± 2/88 ± 1.6). We confirmed these results using a

second metric to estimate learning and plateau performance by fitting logistic general linear

models (GLMs) to performance accuracy in each block (all previously significant results for

trial-to-criterion and plateau accuracy remained significant when instead comparing inflection

point and asymptote, S8 Fig).

We validated that the behavioral impairments emerged shortly after the sonication and

lasted until the end of the�120-min long session (S9 Fig). We also confirmed that the

observed behavioral effects were not only evident when considering individual blocks (the

block-level analysis) (S1 and S2 Figs), but also when averaging the learning performance

across blocks per session and applying session-level statistics (S10 Fig and S1 Table).

So far, we found that ACC-TUS slowed learning speed, increased information sampling

durations, and reduced plateau accuracy in the gain-loss contexts. These results could be due

to motivational difficulties when adjusting to the experience of losing an already attained

token. To analyze this adjustment to losses, we analyzed the performance in trials following

choices that led to losses. We found that experiencing a loss leads to overall poorer perfor-

mance in subsequent trials after ACC-TUS, but not after ACC-Sham, STR-TUS, or STR-Sham

(random permutation test, p< 0.05, Figs 3E and S11A–S11D). Importantly, this overall per-

formance decrement was dependent on the recent history of losses. ACC-TUS reduced perfor-

mance accuracy on trials in the gain-loss context, specifically when subjects had lost 2 or 3

tokens in the preceding 4 trials, but not when their net token gain in the past 4 trials was�0

tokens, or for trials in gain-only context (random permutation test, p< 0.05, Figs 3F and

S11). This dependence of the ACC-TUS effect on the recent gross token income (GTI) was evi-

dent in both monkeys (S11E Fig) and could be a main reason that led to slower learning.

Discussion

We found that sonicating the ACC, but not the anterior striatum (head of the caudate), slowed

down learning, prolonged visual information sampling of objects prior to choosing an object,

and reduced overall performance when learning took place in a context with gains and losses

and with high cognitive load. These behavioral impairments were specific to the ACC-TUS

condition when comparing behavior to baseline performance prior to TUS and to sessions

with sham-controlled TUS and STR-TUS. Moreover, the changes in behavioral adjustment

were found when comparing average performance between individual sessions (S10 Fig), for

performance variations across blocks of different sessions (Fig 2), and on a trial-by-trial level

in impaired behavior when the loss of tokens accumulated over trials (Fig 3).

TUS conditions and a significant difference between the TUS and the baseline (pre-TUS) conditions (for the TUS

condition underneath the asterisks). Horizontal black lines indicate significant pairwise difference between TUS

conditions. Data associated with this plot could be found at: https://figshare.com/projects/TUS_PlosBiology/144330.

ACC, anterior cingulate cortex; GTI, gross token income; LME, linear mixed effect; TUS, transcranial ultrasound

stimulation.

https://doi.org/10.1371/journal.pbio.3001785.g003
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Taken together, these findings provide evidence that primate ACC supports the guidance of

attention and information sampling in contexts that are motivationally challenging and cogni-

tively demanding. Prior to discussing the implications of these findings, it should be noted that

the sonication effects on neuronal activity in vivo are not well investigated. The sonication pro-

tocol we applied may involve changes in the excitability of neural tissue within the hot spot of

the sonicated area [41] or effects on the fibers of passage through the sonication areas. Our dis-

cussion assumes a putative disruptive effect of TUS on neural activity within ACC. This

assumption is based on a prior study that used the same TUS protocol and reported reduced

functional connectivity of the sonicated brain area [38]. There is also the caveat that the sonica-

tion effects could indirectly follow altered activity in other areas through modulating connec-

tivity with those areas.

Extending existing functional accounts of ACC functions

Our main findings suggest extensions to theoretical accounts of the overarching function of the

ACC for adaptive behavior. First, the finding of prolonged information sampling after

ACC-TUS supports recent electrophysiological and imaging studies showing that activity in the

ACC predicts information sampling of visual objects and attention to maximize reward out-

comes [17,18,25,42]. However, we found a functional deficit of information sampling only in

the gain-loss learning context in which subjects expected lower payoff, suggesting that the ACC

contributes to information sampling, particularly in motivationally challenging conditions.

Secondly, our core finding of compromised learning in motivationally challenging condi-

tions partly supports and extends the view that ACC is essential to control effort [30]. The

functional impairment in the gain-loss motivational context was most pronounced when sub-

jects faced high cognitive load, i.e., in the condition that overall was most difficult. While this

result pattern suggests that the overall difficulty may be the primary driver of the ACC-TUS

effects, we outline below that the specific impairments after loss experiences (irrespective of

cognitive load) and the overall reduced plateau performance with ACC-TUS in the gain-loss

context indicate a predominant role of motivational processes over cognitive processes to

drive the behavioral ACC-TUS effects. At a psychological level, the pronounced deficit in the

loss context at high cognitive load is consistent with a neuroeconomic view of ACC function

based on prospect theory, which suggest that losses induce a particularly strong internal

demand for adjusting actions, which is intensified when the adjustment of the action itself gets

more demanding by an increase in cognitive load [37,43,44]. A particular role of the ACC in

mediating the motivational consequences of negative loss experiences is consistent with a

wealth of studies about affective processing, mostly from human imaging studies, that show

systematic ACC activation in the face of aversive or threatening experiences [33,34,45].

Our finding that experiencing losses was necessary to observe behavioral deficits from

ACC-TUS shows that the presence of a cognitive conflict due to an increased number of fea-

tures in the high cognitive load condition was not sufficient to alter performance. This result

might seem at odds with literature implicating the ACC to be particularly relevant to resolving

conflict [46,47]. However, increasing cognitive load in our task entailed increased perceptual

interference from object features, it did not entail a conflict of sensory-motor mappings that is

the hallmark of conflict-inducing flanker, Stroop, or Simon tasks, used to document a role of

the ACC to mediate the resolution of conflict [26,46,48]. Therefore, our results do not oppose

studies using those paradigms, which gave rise to the view that neuronal signaling in ACC con-

tributes to resolving sensorimotor conflicts [2]. Our results instead point to the importance of

the ACC in contributing to overcoming situations in which motivational challenges require

enhanced encoding of task-relevant variables.
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Taken together, our observed result pattern supports theories suggesting the ACC contrib-

utes to information sampling as well as to controlling motivational effort during adaptive

behavior. The results suggest that these functions of the ACC are recruited when the task

requires overcoming motivational challenges from anticipating losses and when learning takes

place in a cognitively demanding situation. We discuss the specific rationale for this conclu-

sion in the following.

ACC modulates the efficiency of information sampling

We found that ACC-TUS increased the duration of fixating objects prior to choosing an object

in the loss contexts. Longer fixation durations are typically considered to reflect longer sam-

pling of information from the foveated object. This has been inferred from the longer fixa-

tional sampling of objects associated with higher outcome uncertainty [49] or that explicitly

carry information that reduces uncertainty about outcomes [50,51]. We, therefore, consider

fixational sampling of visual objects to index information sampling. Consistent with this view,

we found that ACC-TUS prolonged information sampling at high cognitive load when objects

varied in more features from trial to trial and hence carried higher uncertainty about which

feature was linked to reward (Figs 2D and 2E and S7). These results suggest that TUS might

disrupt or modulate the activity of neuronal circuitries in ACC that would have responded to

the demand for information about the feature values by controlling the duration of gaze fixa-

tions on available objects. Such activity has been documented to be encoded in ACC [16–19].

These studies found that neurons in the ACC encoded the pre-learned value of objects when

they were fixated [18] or peripherally attended [16,19]. Moreover, subpopulations of ACC

neurons also encode the value of objects that are not yet fixated but are possible future targets

for fixations [17]. Disrupting these signals with TUS in our study is a plausible reason causing

uncertainty about the value of objects and for prolonging information sampling durations.

In our study, ACC_TUS prolonged information sampling most prominently in the gain-

loss context when subjects were uncertain not only about the possible gains following correct

choices, but additionally about the possible losses following incorrect choices (Fig 3D and 3E).

This is consistent with recent findings of neurons in the intact ACC that fire stronger when

subjects fixate on cues that reduce uncertainty about anticipated losses [27]. In that study,

trial-by-trial variations of ACC activity during the fixation of punishment-predicting cues cor-

related with trial-by-trial variations of seeking information about how aversive a pending out-

come will be [27]. In our study, disrupting this type of activity with transcranial ultrasound

may thus have disrupted the efficacy of acquiring information about the loss association of fea-

tures while fixating objects. According to this interpretation, the TUS-induced prolongation of

fixation durations indicates that an intact ACC critically enhances the efficiency of visual

information sampling to reduce uncertainty about aversive outcomes.

ACC mediates feature-specific credit assignment for aversive outcomes

The altered information sampling after ACC-TUS was only evident in the gain-loss context

and depended on experiencing losing tokens. We found that losing 1, 2, or 3 tokens signifi-

cantly impaired performance in ACC-TUS compared to sham or striatum sonication (Fig 3F).

This valence-specific finding might be linked to the relevance of the ACC for processing nega-

tive events and adjusting behavior after negative experiences. Imaging studies have consis-

tently shown ACC activation in response to negatively valenced stimuli or events [33–35].

Behaviorally, the experience of loss outcomes is known to trigger autonomous vigilance

responses that reorient attention and increase explorative behaviors [37,52,53]. Such loss-

induced exploration can help avoid threatening stimuli, but it comes at the cost of reducing
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the depth of processing the loss-inducing stimulus [36]. Studies in humans have shown that

stimuli associated with loss of monetary rewards or aversive outcomes (aversive images, odors,

or electrical shocks) are less precisely memorized than stimulus features associated with posi-

tive outcomes [54–56]. Such a reduced influence of loss-associated stimuli on future behavior

may partly be due to loss experiences curtailing the engagement with those stimuli and reduc-

ing the evaluation of their role for future choices, as demonstrated, e.g., in a sequential deci-

sion-making task [57]. One behavioral consequence of a reduced evaluation or memorization

of aversive or loss-associated stimuli is an over-generalization of aversive outcomes to stimuli

that only share some resemblance with the specific stimulus that caused the loss experience.

Such over-generalization is evolutionary meaningful because it can support the faster recogni-

tion of similar stimuli as potentially threatening even if these stimuli are not a precise instance

of a previously encountered, loss-inducing stimulus [36,58]. For our task, such a precise recog-

nition of features of a chosen object was pivotal to learning from feature-specific outcomes.

Our finding of reduced learning from loss outcomes, therefore, indicates that ACC-TUS exac-

erbated the difficulty to assign negative outcomes to features of the chosen object.

Neurophysiological support for this interpretation of the ACC to mediate negative credit

assignment comes from studies showing a substantial proportion of neurons in ACC encode

feature-specific prediction errors [15]. These neurons responded to an error outcome most

strongly when it was unexpected and when the chosen object contained a specific visual fea-

ture. This is precisely the information that is needed to learn which visual features should be

avoided in future trials. Consistent with this importance for learning, the study also reported

that feature-specific prediction error signals in the ACC predict when neurons updated value

expectations about specific features [15,59]. Thus, neurons in ACC signal feature-specific neg-

ative prediction errors and the updating of feature-specific value predictions. It seems likely

that disrupting these signals with TUS will lead to impaired feature-specific credit assignment

in our task. This scenario is supported by the finding that ACC-TUS impaired flexible learning

most prominently at high load, i.e., when there was a high degree of uncertainty about which

stimulus feature was associated with gains and which features were associated with losses (Fig

2C). This finding suggests that outcome processes such as credit assignment in an intact ACC

critically contribute to the learning about aversive distractors.

A role of the ACC to determine learning rates for aversive outcomes

So far, we have discussed that ACC-TUS has likely reduced the efficiency of information sam-

pling and this reduction could originate from the disruption of feature-specific credit assign-

ment processes. These phenomena were exclusively observed in the loss context, and

ACC-TUS did not change learning or information sampling in the gain-only context. Based

on this finding, we propose that the ACC plays an important role in determining the learning

rate for negative or aversive outcomes and thereby controls how fast subjects learn which

object features in their environments have aversive consequences. Such learning from negative

outcomes was particularly important for our task at higher cognitive load [60]. At high load, a

single loss outcome provided unequivocal information that all features of the chosen object

were non-rewarded features in the ongoing learning block. This was different for positive out-

comes. Receiving a positive outcome was linked to only 1 feature out of 2 or 3 features of the

chosen object, making it more difficult to discern the precise cause of the outcome. The higher

informativeness of negative than positive outcomes can explain why ACC-TUS caused a selec-

tive learning impairment in the loss context when assuming that TUS introduced uncertainty

in the neural information about the cause of the outcome. This interpretation is consistent

with the established role of the ACC to encode different types of errors [32,61,62] and with
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computational evidence that learning from errors and other negative outcomes is dependent

on a dedicated learning mechanism separately of learning from positive outcomes [60,63–65].

The suggested role of the ACC to determine the rate of learning from negative outcomes

describes a mechanism for establishing which visual objects are distractors and should be

actively avoided and suppressed in a given learning context [66]. When subjects experience

aversive outcomes, the ACC may use these experiences to bias attention and information sam-

pling away from the negatively associated stimuli. This suggestion is consistent with the fast

neural responses in ACC to attention cues that trigger inhibition of distracting and enhance-

ment of target information [16,19]. In these studies, the fast cue-onset activity reflects a push-

pull attention effect that occurred during covert attentional orienting and was independent of

actual motor actions. This observation supports the general notion that ACC circuits are criti-

cal for guiding covert and overt information sampling during adaptive behaviors [18,25].

Versatility of the focused-ultrasound protocol for transcranial

neuromodulation

Our conclusions were made possible using a TUS protocol that was developed to interfere

with local neural activity in deep neural structures which likely imposes a temporary functional

disconnection of the sonicated area from its network [38,40]. We implemented an enhanced

protocol that entailed quantifying the anatomical targeting precision (S3A and S3B Fig) and

confirmed by computer simulations that sonication power reached the targets (S3C–S3E Fig).

We also showed that the TUS pressure in ACC was comparative to the maximum pressure in

the brain and noticeably higher than in other nearby brain structures such as the orbitofrontal

cortex (see Materials and methods and S3F Fig). We also documented that the main behav-

ioral effect (impaired learning) of ACC-TUS was evident relative to a within-task pre-sonica-

tion baseline and throughout the experimental behavioral session (S9 Fig) and that the main

TUS-ACC effects were qualitatively consistent across monkeys (for monkey specific results,

see S1–S10 Figs; there were no significant random effects of the factor monkey in the LME

models). Importantly, the main behavioral effects of ACC-TUS in our task are consistent with

the effects from more widespread, invasive lesions of the ACC in nonhuman primates. Wide-

spread ACC lesions reduce affective responses to harmful stimuli [67], increase response per-

severations [68], cause failures to use reward history to guide choices [7,8], and reduce control

to inhibit prevalent motor programs [69,70]. Our study, therefore, illustrates the versatility of

the TUS approach to modulate deeper structures such as the ACC that so far have been out of

reach for noninvasive neuromodulation techniques such as transcranial magnetic stimulation

(TMS) or transcranial direct current stimulation (tDCS) [71]. Despite these suggestions, it

should be made explicit that there is so far a scarcity of insights about the specific effects of the

TUS protocol on neural circuits. Therefore, future studies will need to investigate the neural

mechanisms underlying the immediate and longer-lasting TUS effects on ACC neural circuits.

In summary, our results suggest that the ACC multiplexes motivational effort control and

attentional control functions by tracking the costs of incorrect performance, optimizing fea-

ture-specific credit assignment for aversive outcomes, and actively guiding information sam-

pling to visual objects during adaptive behaviors.

Materials and methods

Ethics statement

All procedures were in accordance with the National Institutes of Health Guide for the Care

and Use of Laboratory Animals, the Society for Neuroscience Guidelines and Policies, and
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approved by the Vanderbilt University Institutional Animal Care and Use Committee

(M1700198-01).

Experimental procedures

Two male macaque monkeys (monkey I 13.6 kg and monkey W 14.6 kg, 8 to 9 years of age)

contributed to the experiments. They sat in a sound-proof booth in primate chairs with their

head position fixed, facing a 21” LCD screen at a distance of 63 cm from their eyes to the

screen center. Behavior, visual display, stimulus timing, and reward delivery were controlled

by the Unified Suite for Experiments (USE), which integrates an IO-controller board with a

unity3D video-engine-based control for displaying visual stimuli, controlling behavioral

responses, and triggering reward delivery [72]. Prior to the ultrasound experiment, the animals

were trained on the feature learning task in a kiosk training station [73]. Monkeys first learned

to choose objects to receive an immediate fluid reward before a token system that provided

animals with green circles per correct choice that symbolized tokens later cashed out for fluid

reward. Tokens were presented above the chosen object and traveled to a token bar where they

accumulated with successive correct performance. When 5 tokens were collected, the token

bar blinked red/white, fluid was delivered through a sipper tube, and the token bar reset to 5

empty token placeholders (Fig 1A). The animals effortlessly adopted the token reward system

as documented in [36]. Here, we used in separate blocks of 35 to 50 trials a condition with

“gains-only” (3 tokens for correct choices, no penalties) and with “gains-and-losses” (2 tokens

for correct choices and 1 token lost, i.e., removed from the token bar, for incorrect choices).

The introduction of gains-and-losses effectively changed behavior. Animals learned slower,

showed reduced plateau accuracy, enhanced exploratory sampling, and more checking of the

token bar (S2B–S2H Fig).

Task paradigm

The task required monkeys to learn feature-reward rules in blocks of 35 to 60 trials through

trial-and-error by choosing 1 of 3 objects. Objects were composed of multiple features, but

only 1 feature was associated with reward (Fig 1A–1C). A trial started with the appearance of a

black circle with a diameter of 1 cm (0.5˚ radius wide) on a uniform gray background on the

screen. Monkeys fixated the black circle for 150 ms to start a trial. Within 500 ms after the cen-

tral gaze fixation registration, 3 objects appeared on the screen randomly at 3 out of 4 possible

locations with an equal distance from the screen center (10.5 cm, 5˚ eccentricity). Each stimu-

lus had a diameter of 3 cm (approximately 1.5˚ radius wide). To choose an object, monkeys

had to maintain fixation onto the object for at least 700 ms. Monkeys then had 5 s to choose 1

of 3 objects or the trial was aborted. Choosing the correct object was followed by a yellow halo

around the stimulus as visual feedback (500 ms), an auditory tone, and either 2 or 3 tokens

(green circles) added to the token bar (Fig 1A). Choosing an object without the rewarded tar-

get feature was followed by a blue halo around the selected objects, a low-pitched auditory

feedback, and in the loss conditions, the presentation of a gray “loss” token that traveled to the

token bar where one already attained token was removed. The timing of the feedback was

identical for all types of feedback. In each session, monkeys were presented with up to 36 sepa-

rate learning blocks, each with a unique feature-reward rule. Across all 48 experimental ses-

sions, monkeys completed on average 23.6 (±4 SE) learning blocks per session (monkey W:

20.5 ± 4, monkey I: 26.5 ± 4). For each experimental session, a unique set of objects was

defined by randomly selecting 3 dimensions and 3 feature values per dimension (e.g., 3 body

shapes: oblong, pyramidal, and ellipsoid; 3 arm types: upward pointy, straight blunt, down-

ward flared; 3 patterns: checkerboard, horizontal striped, vertical sinusoidal; Watson and
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colleagues, 2019 [74] have documented the complete library of features). Of this feature set, 3

different task conditions were defined: One task condition contained objects that varied in

only 1 feature while all other features were identical, i.e., the object body shapes were oblong,

pyramidal, and ellipsoid, but all objects had blunt straight arms and uniform gray color. A sec-

ond task condition defined objects that varied in 2 feature dimensions (“2D” condition), and a

third task condition defined objects that varied in 3 feature dimensions (“3D” condition).

Learning is systematically more demanding with increasing number of feature dimensions

that could contain the rewarded feature (for computational analysis of the task, see Womels-

dorf and colleagues, 2021). We refer to the variations of the object feature dimensionality as

cognitive load because it corresponds to the size of the feature space subjects have to search to

find the rewarded feature (Figs 1E and S1), and 1D, 2D, and 3D conditions varied randomly

across blocks.

Experimental design

Each session randomly varied across blocks 2 motivational conditions (gain/loss and gains-

only) and 3 cognitive load conditions (1D, 2D, and 3D). Randomization ensured that all (6)

combinations of conditions were present in the first 6 blocks prior to sonication and that all

combinations of conditions were equally often shown in the 24 blocks after the first 6 blocks.

After monkeys completed the first 6 learning blocks (on average 12 min after starting the

experiment), the task was paused to apply TUS. After bilateral placement of the transducer

and sonication (or sham sonication) of the brain areas, the task resumed for 18 to 24 more

blocks (Fig 1D). Experimental sessions lasted 90 to 120 min.

Transcranial ultrasound stimulation (TUS)

For transcranial stimulation, we used a single element transducer with a curvature of 63.2 mm

and an active diameter of 64 mm (H115MR, Sonic Concepts, Bothell, Washington, United

States of America). The transducer was attached to a cone with a custom-made trackable arm.

Before each session, we filled the transducer cone with warm water and sealed the cone with a

latex membrane. A conductive ultrasound gel was used for coupling between the transducer

cone and the shaved monkey’s head. A digital function generator (Keysight 33500B series,

Santa Rosa, California, USA) was used to generate a periodic burst of 30-ms stimulation with a

resonate frequency of 250 kHz and an interval of 100 ms for a total duration of 40 s and 1.2

MPa pressure (similar to [39,75]) (Fig 1D). A digital function generator was connected to a

150-watt amplifier with a gain of 55 dB in the continuous range to deliver the input voltage to

the transducer (E&I, Rochester, New York, USA). We measured the transducer output in

water using a calibrated ceramic needle hydrophone (HNC 0400, Onda Corp., Sunnyvale, Cal-

ifornia, USA) and created a linear relationship between the input voltage and peak pressure.

To avoid hydrophone damage, only pressures below a mechanical index (MI) of 1.0 were mea-

sured and amplitudes above this were extrapolated. We have previously measured transducer

output at MI> 1.0 with a calibrated optical hydrophone (Precision Acoustics, Dorchester,

United Kingdom) to validate the linearity of this relationship at higher MI, but this calibrated

device was not available during these studies. During stimulation, the bi-directionally coupled

(ZABDC50-150HP+, Mini Circuits Brooklyn, New York, USA) feedforward and feedback

voltage were monitored and logged using a Picoscope 5000 series (A-API; Pico Technology,

Tyler, Texas, USA) and a custom written python script.

Four different sonication conditions were pseudo-randomly assigned to the experimental

days per week for a 12-week experimental protocol per monkey. These 4 conditions consisted

of high energy TUS in anterior striatum (TUS-STR), high energy TUS in anterior cingulate
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cortex (TUS-ACC), sham anterior striatum (Sham-STR), and sham anterior cingulate cortex

(Sham-ACC) (Fig 1D). We sequentially targeted an area in both hemispheres (each hemi-

sphere for a 40-s duration) with real-time monitoring of the distance of the transducer to the

targeted area (S3A Fig) and monitoring of the feedforward power (S3B Fig). Sham conditions

were identical to TUS conditions, only no power was transmitted to the transducer.

Data analysis

Trial-level statistical analysis. We tested TUS effects on behavior at the trial level using

LMEs models [10] with 4 main factors: cognitive load (CogLoad) with 3 levels (1D, 2D, and 3D

distractor feature dimensions, ratio scale with values 1, 2, and 3), trial in block (TIB), previous
trial outcome (PrevOutc)) which is the number of tokens gained or lost in the previous trial,

motivational token condition, which we call the motivational gain/loss context (MCtxGain/Loss)
with 2 levels (1, for the loss condition, and 2, for the gain condition, nominal variable), TUS

condition (TUSCnd) with 4 levels (Sham-ACC, TUS-ACC, Sham-STR, and TUS-STR), and

time relative to stim (T2Stim) with 2 levels (before versus after stimulation). We used 3 other

factors as random effects, a factor target features (Feat) with 4 levels (color, pattern, arm, and

shape), weekday of the experiment (Day) with 4 levels (Tuesday, Wednesday, Thursday, and

Friday), and the factor monkeys with 2 levels (W and I). We used these factors to predict 3 met-

rics (Metric): accuracy (Accuracy), reaction time (RT), and information sampling (SampleExplr).
The LME is formalized as in Eq 1.

Metric ¼ CogLoad þ TIBþ PrevOutc þMCtxGain=Loss þ TUSCnd þ T2Stimþ ð1jDayÞ þ ð1jFeatÞ

þ ð1jMonkeysÞ þ bþ ε ð1Þ

Block-level analysis of behavioral metrics. We used LME models to analyze across

blocks how learning speed (indexed as the “learning trial” (LT) at which criterion performance

was reached), post-learning accuracy (Accuracy), and metrics for choice and information sam-

pling were affected by TUS. In addition to the fixed and random effects factors used for the

LME in Eq 1, we also included the factor block switching condition (SwitchCnd) with 2 levels

(intra- and extra-dimensional switch). The LME had the form of Eq 2:

Metric ¼ CogLoad þMCtxGain=Loss þ TUSCnd þ T2Stimþ ð1jDayÞ þ ð1jMonkeysÞ þ ð1jFeatÞ

þ bþ ε: ð2Þ

We extended the model to test for interactions of TUSCnd, MCtxGain/Loss, and T2Stim:

Metric ¼ CogLoad þMCtxGain=Loss þMCtxGain=Loss � TUSCnd � T2Stimþ ð1jDayÞ þ ð1jMonkeyÞ

þ ð1jFeatÞ þ bþ ε; ð3Þ

for interactions of T2Stim, CogLoad, and TUSCnd:

Metric ¼ CogLoad þMCtxGain=Loss þ TUSCnd � T2Stim� AttLoad � TUSCnd þ ð1jDayÞ

þ ð1jMonkeyÞ þ ð1jFeatÞ þ bþ ε; ð4Þ

and for interactions of T2Stim, CogLoad, MCtxGain/Loss, and TUSCnd:

Metric ¼ CogLoad þMCtxGain=LossþTUSCnd � T2Stim� AttLoad � TUSCnd �MCtxGain=Loss
þ ð1jDayÞ þ ð1jMonkeyÞ þ ð1jFeatÞ þ bþ ε: ð5Þ
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Supporting information

S1 Text. Supplementary Information. Contains detailed methods for precise TUS neuronavi-

gation, TUS simulations, and data analysis.

(DOCX)

S1 Fig. Cognitive load effect on learning and fixational information sampling. (A, B) Both

monkeys reached the learning criterion of 80% or more correct trials (based on a 12 trials for-

ward-looking window). Learning is fastest at low cognitive load (light gray), and slowest at

high cognitive load (dark gray). In all panels, the left column shows the results for monkey W,

the middle for monkey I, and the right for both monkeys combined. (C) Post-learning accu-

racy is significantly reduced in higher cognitive load (LMEs, P< 0.001). (D, E) Information

sampling is the duration in msec. of fixational sampling of objects prior to making a choice.

Information sampling increased at the beginning of a block, reached a maximum during learn-

ing, and but remained elevated only at the highest cognitive load (LMEs, p< 0.001). (F)

Choice reaction time is the time from stimulus onset to the onset of the final fixation (that

chooses the object). It increased with cognitive load (Kruskal–Wallis test, p< 0.001). (G)

Choice sampling is measured as the duration of sampling the chosen object prior to the final

choice fixation. Choice sampling is increased in blocks with higher cognitive load (Kruskal–

Wallis test, p< 0.001). (H) Asset sampling duration quantifies how long subjects fixate the

token bar prior to choosing an object. Asset sampling is independent of cognitive load and

more extensive in monkey I. Data show means and standard error of the mean. Data associ-

ated with this plot could be found at: https://figshare.com/projects/TUS_PlosBiology/144330.

(EPS)

S2 Fig. Effects of gain-loss and gain-only learning contexts on learning and gaze sampling

behaviors. (A, B) AU : PleasecheckifthechangesmadeinthesentenceðA;BÞSameformatasS1AandS1BFig:arecorrect:Same format as S1A and S1B Fig. Learning is faster in the gain-only context

(blue), than in the gain-loss context. In all panels, the left column shows the results for monkey

W, the middle for the monkey I, and the right for both monkeys. (C) Post-learning accuracy is

significantly reduced in the gain-loss context (Wilcoxon test, P< 0.001). (D, E) Information

sampling reaches a higher maximum during learning in the gain-loss context (red) compared

to the gain-only context (blue) (Wilcoxon test, P< 0.001). (F) Choice reaction time is slower

in the gain-loss context (Wilcoxon test, p< 0.001). (G) Sampling of the object that is subse-

quently chosen is longer in the gain-loss context (Wilcoxon test, p< 0.001). (H) Asset sam-

pling duration is longer in the gain-loss context (Wilcoxon test, p< 0.001). Data show mean

and standard error of the mean. Data associated with this plot could be found at: https://

figshare.com/projects/TUS_PlosBiology/144330.

(EPS)

S3 Fig. Transcranial ultrasound stimulation localization, energy, and sonication focus

specifications. In each experimental session, we positioned the transducer sonication beam to

focus on left and right hemisphere ACC and striatum and sonicated the area for 40 seconds in

each hemisphere. (A) Both hemispheres in both monkeys were targeted precisely within an

averaged sub-millimeter distance from the center of focal beam of the transducer to the ana-

tomical target region. (B) Real-time monitoring of output voltage to the transducer confirmed

reliable feedforward voltage range for both monkeys (see Materials and methods). (C,D)

Computer simulations show a reliable range of RMS deviation values of negative peak pressure

at the focus of the sonication attenuated at −3 dB (C), and −6 dB (D). (E) Maximum peak pres-

sure at the targeted area. (F) For ACC-TUS sessions, to assure the effect is not attributed to

OFC that appears to be aligned with the TUS orientation in Fig 2A, we compared the spatial

average within a 4-mm cubic volume around each label target. Simulations showed ACC
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received significantly higher compared with OFC (Wilcoxon test, P< 0.0001) and showed

comparative value relative to the maximum pressure values in brain. Lines in panels (A–D)

show standard error of the mean, and in (F) show median across all individual sessions (small

dots). Data associated with this plot could be found at: https://figshare.com/projects/TUS_

PlosBiology/144330. ACC, anterior cingulate cortex; OFC, orbitofrontal cortex; RMS, root

mean squared; TUS, transcranial ultrasound stimulation.

(EPS)

S4 Fig. Transcranial ultrasound stimulation effect on learning for individual monkeys (left

and middle column) and their average (right column). (A, B) Learning curves for 4 different

experimental conditions: high energy TUS in ACC (TUS-ACC; red), or anterior striatum

(TUS-STR; green), or sham ACC (Sham-ACC; darkened red), or sham anterior striatum

(Sham-STR; darkened green). Learning curves are shallower after TUS-ACC in the gain-loss

context (A) but not in the gain-only context (B). (C, D) The reduced learning speed (increased

trials-to-criterion) with TUS-ACC in the gain-loss learning context (C) but not in the gain-

only learning context (D). Detailed statistics are provided in S1 Table. Data show mean and

standard error of the mean. The black asterisks show significant main effect of TUS conditions

and a significant difference between the TUS and the baseline (pre-TUS) conditions (for the

TUS condition underneath the asterisks). Horizontal black lines indicate significant pairwise

difference between TUS conditions. Data associated with this plot could be found at: https://

figshare.com/projects/TUS_PlosBiology/144330.

(EPS)

S5 Fig. TUS interaction of cognitive load and motivational context. (A, B) TUS in ACC

reduces learning speed at higher cognitive load in the gain-loss learning context (A), but not

the gain-only learning context (B) (for the full multiple comparison corrected statistical results

see S2 Table). (C) Marginally normalized trials-to-criterion are significantly higher with

TUS-ACC in the gain-loss learning context, and the effect in TUS-ACC was only significant at

higher cognitive load conditions 2D and 3D (random permutation p< 0.05). Error bars are

standard error of the mean. The white rectangle in (C) shows learning in a TUS condition is

different from other TUS conditions. Each cell is color coded with the mean value ± standard

error of the mean with a low to high value gradient from left to right. The white asterisk shows

cognitive loads in a learning context in a TUS condition is significantly different from other

TUS conditions. In all panels, the left column shows the results for monkey W, the middle for

the monkey I, and the right for both monkeys combined. Black cross (×) and asterisk shows

significant interaction of cognitive load and TUS conditions. Black asterisks show significant

main effect of TUS conditions and a significant difference between the TUS and the baseline

(pre-TUS) conditions (for the TUS condition underneath the asterisks). Data associated with

this plot could be found at: https://figshare.com/projects/TUS_PlosBiology/144330.

(EPS)

S6 Fig. Transcranial ultrasound stimulation effects on explorative behavior. (A, B) Infor-
mation sampling curves showing the average fixation durations on objects before making a

choice. With the beginning of a new learning block information sampling increases to a maxi-

mum during learning and then slowly reduces to a baseline level. TUS in ACC in the gain-loss

learning context (A), but not in the gain-only context causes elevated exploratory sampling

(B). (C, D) Information sampling is increased with TUS in ACC relative to baseline and other

TUS conditions in the gain-loss context (C) but not the gain-only context (D). (E, F) Post-

learning accuracy is not significantly different from the baseline and other TUS conditions in

the block-level analysis, neither in gain-loss context (E), nor the gain-only context (F) (detailed

PLOS BIOLOGY Anterior Cingulate Cortex Supports Flexible Learning and Information Sampling

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001785 September 6, 2022 17 / 24

https://figshare.com/projects/TUS_PlosBiology/144330
https://figshare.com/projects/TUS_PlosBiology/144330
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3001785.s005
https://figshare.com/projects/TUS_PlosBiology/144330
https://figshare.com/projects/TUS_PlosBiology/144330
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3001785.s006
https://figshare.com/projects/TUS_PlosBiology/144330
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3001785.s007
https://doi.org/10.1371/journal.pbio.3001785


statistics in S1 Table). The black asterisks show significant main effect of TUS conditions and

a significant difference between the TUS and the baseline (pre-TUS) conditions (for the TUS

condition underneath the asterisks). Horizontal black lines indicate significant pairwise differ-

ence between TUS conditions. Data associated with this plot could be found at: https://

figshare.com/projects/TUS_PlosBiology/144330.

(EPS)

S7 Fig. Distribution of gaze fixation duration before a choice. (A) Distribution of gaze fixa-

tion duration on each object before making a choice (in brown) which we referred to as a mea-

sure of information sampling. In contrast to fixations indexing information sampling a “choice

fixation” was registered when a fixation duration was�700 ms (in yellow). (B–E) Bootstrap

distributions on information sampling for different cognitive load (B), motivational context

(C), and TUS in gain-loss motivational context (D), and TUS in gain-only motivational con-

text conditions (E). Data associated with this plot could be found at: https://figshare.com/

projects/TUS_PlosBiology/144330.

(EPS)

S8 Fig. Logistic regression GLM fit to performance accuracy. (A–D) Average logistic regres-

sion fit using GLM on performance accuracy over learning blocks for different, (A), cognitive

load, (B), motivational context, (C), TUS in gain-loss motivational context, and (D), TUS in

gain-only motivational context conditions. Shaded error bars are standard errors of the mean.

Data associated with this plot could be found at: https://figshare.com/projects/TUS_

PlosBiology/144330. GLM, generalized linear mixed model; TUS, transcranial ultrasound

stimulation.

(EPS)

S9 Fig. Time course of the effect of transcranial ultrasound stimulation on learning and

explorative behavior. (A) Monkeys show a gradual deterioration of learning with TUS in

ACC over time in the gain-loss conditions. (B) Information sampling increases over time rela-

tive to the time of TUS in ACC. The x-axis shows the time in minutes relative to TUS stimula-

tion within a session. The time-step resolution is 20 min. Both monkeys show a similar time

course with the slowing of learning from 20–40 min after the stimulation to the end of the ses-

sion (randomized permutation test, p< 0.05). Shaded error bars are standard errors of the

mean. Data associated with this plot could be found at: https://figshare.com/projects/TUS_

PlosBiology/144330.

(EPS)

S10 Fig. Session level effect of transcranial ultrasound stimulation on learning and infor-

mation sampling. Average results for each session and across sessions for monkey W and I,

and both combined (left, middle, and right column, respectively). (A, B) TUS in ACC caused

slower learning in both monkeys in the gain-loss context (A), but not in the gain-only context

(B). (C, D) TUS in ACC causes longer information sampling than Sham STR in the gain-loss

context (C). There was, however, no difference to baseline or in the gain-only context. (D). (E,

F) TUS in ACC reduced post-learning accuracy relative to baseline and other TUS conditions

in the gain-loss context (E), but not the gain-only context (F). For detailed statistics, see S1

Table. Data show session means for the pre-stimulation baseline blocks (gray) and across

blocks after TUS/Sham (colored). Significant pairwise comparisons are indicated with black

horizontal lines between each pair of conditions and the black asterisk shows significant ses-

sion-level difference (post TUS versus baseline) of each behavioral measure. Data associated

with this plot could be found at: https://figshare.com/projects/TUS_PlosBiology/144330.

(EPS)
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S11 Fig. Trial-level effects of transcranial ultrasound stimulation on post-outcome perfor-

mance adjustment. (A–D) Normalized performance accuracy in the 5 trials after receiving

either a loss of 1 token (A), no loss after an incorrect response (B), a gain of 2 tokens (C), and a

gain of 3 tokens (D). TUS in ACC (red) caused overall reduced performance accuracy in each

monkey after losing 1 token or gaining 2 tokens that shows the effect is specific to the gain-loss

context. (E) Both monkeys show reduced performance (y-axis) after TUS in ACC when the

GTI was negative, i.e., then they on average had lost 1–3 tokens in the preceding 4 trials in

gain-loss motivational context condition. (F) The performance accuracy was not different for

any of GTI values in gain-only motivational context condition. Accuracy on the trial-level

analysis is normalized by the mean and standard deviation of the accuracy of similar events in

the baseline during the same TUS session. All statistics in these panels used randomization

(permutation) tests with FDR correction of p-values for dependent samples with an alpha level

of 0.05. The black asterisk shows points significantly different from pre-TUS baseline and rela-

tive to other TUS conditions. Data associated with this plot could be found at: https://figshare.

com/projects/TUS_PlosBiology/144330. ACC, anterior cingulate cortex; GTI, gross token

income; TUS, transcranial ultrasound stimulation.

(EPS)

S1 Table. Statistical results considering data from individual blocks (block level, left) and aver-

age data from individual sessions (session level, right) for trials-to-criterion (A, B), informa-

tion sampling durations (C, D), and the post-learning plateau accuracy (E, F). Each table

shows results of 3 different tests for the 2 motivational learning contexts: gain-only (G, in blue

font) and gain-loss (GL, in red font). The p-values on the diagonal show Wilcoxon tests for

each TUS condition compared to its baseline (before the stimulation). The non-diagonal cells

show p-values for pairwise comparisons of each pair of the TUS conditions. The overall Krus-

kal–Wallis test results is shown on the right outside of each table. All p-values are FDR-cor-

rected with an alpha level of 0.05, as explained in the methods. Data associated with this table

could be found at: https://figshare.com/projects/TUS_PlosBiology/144330.

(EPS)

S2 Table. Statistical results split for low (left) and high (right) cognitive load conditions for tri-

als-to-criterion (A, B), information sampling durations (C, D), and the post-learning plateau

accuracy (E, F). Each table shows results of 3 different tests for the 2 motivational learning con-

texts: gain-only (G, in blue font) and gain-loss (GL, in red font). The p-values on the diagonal

show Wilcoxon tests for each TUS condition compared to its baseline (before the stimulation).

The non-diagonal cells show p-values for pairwise comparisons of each pair of the TUS condi-

tions. The overall Kruskal–Wallis test results is shown on the right outside of each table. All p-

values are FDR-corrected with an alpha level of 0.05, as explained in the methods. Data associ-

ated with this table could be found at: https://figshare.com/projects/TUS_PlosBiology/144330.

(EPS)
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