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A B S T R A C T

Background: There is a growing interest in complex, active, and immersive behavioral neuroscience tasks.
However, the development and control of such tasks present unique challenges.
New Method: The Unified Suite for Experiments (USE) is an integrated set of hardware and software tools for the
design and control of behavioral neuroscience experiments. The software, developed using the Unity video game
engine, supports both active tasks in immersive 3D environments and static 2D tasks used in more traditional
visual experiments. The custom USE SyncBox hardware, based around an Arduino Mega2560 board, integrates
and synchronizes multiple data streams from different pieces of experimental hardware. The suite addresses
three key issues with developing cognitive neuroscience experiments in Unity: tight experimental control, ac-
curate sub-ms timing, and accurate gaze target identification.
Results: USE is a flexible framework to realize experiments, enabling (i) nested control over complex tasks, (ii)
flexible use of 3D or 2D scenes and objects, (iii) touchscreen-, button-, joystick- and gaze-based interaction, and
(v) complete offline reconstruction of experiments for post-processing and temporal alignment of data streams.
Comparison with Existing Methods: Most existing experiment-creation tools are not designed to support the de-
velopment of video-game-like tasks. Those that do use older or less popular video game engines as their base,
and are not as feature-rich or enable as precise control over timing as USE.
Conclusions: USE provides an integrated, open source framework for a wide variety of active behavioral neu-
roscience experiments using human and nonhuman participants, and artificially-intelligent agents.

1. Introduction

1.1. Static and active tasks

Participants in most traditional psychology or neuroscience ex-
periments are presented with impoverished stimuli and tightly-re-
stricted response options. This approach, which for the sake of brevity
we refer to as static, maximizes experimental control, constrains pos-
sible interpretations of results, allows for the comparatively easy
creation of experimental tasks, and is a critical part of the reductionist
approach that has led to many of the exceptional successes of the
cognitive sciences. However, researchers are increasingly concerned
with understanding behaviour and neural processing in tasks and
contexts that are more complex and naturalistic, an approach we refer
to as active. Here we present an integrated suite of software and

hardware designed to aid in the development, control and analysis of
active cognitive neuroscience experiments, the Unified Suite for
Experiments (USE).

Given the success of static tasks and their dominance in the cogni-
tive sciences, why should researchers bother with active tasks? We
provide three answers to this question. First, there is the common
concern about ecological validity and the generalizability of results,
namely that results from simple static tasks do not necessarily gen-
eralize and may be misleading when taken to provide insight into real-
world behaviour and neural activity (Kingstone et al., 2008;
Schmuckler, 2001; Chaytor and Schmitter-Edgecombe, 2003). For ex-
ample, there are substantial quantitative and qualitative differences in
biases for gaze to be directed towards others' eyes that depend on
whether participants are viewing static pictures, watching movies, or
are involved in genuine interactions with other humans (Risko et al.,
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2012). By facilitating the generation of both static and active tasks
using the same underlying task structure, USE enables the direct in-
vestigation of differences between them.

Second, more naturalistic stimuli and flexible possibilities of control
can be more immersive and dramatically more motivating for human
and nonhuman primate subjects (Bennett et al., 2016; Bouchard et al.,
2011; Slater and Wilbur, 1997; Witmer and Singer, 1998; Youngblut,
2007). As one testament to this, over the decades where video games
developed more realistic visuals and more flexible and responsive
controls, they developed from an obscure hobby to a multi-billion
dollar industry with more consumers and larger revenues than film-
making (The NDP Group, 2009; Shanley, 2017). As another testament,
more realistic computer game environments can lead to reliable in-
creases of learning outcomes in variety of contexts (e.g. Mayer, 2018).

Finally, active tasks enable the collection and exploration of a wide
array of precise and multi-modal data about complex behaviors, which
are necessary to generate hypotheses for understanding real-world be-
haviors (Kingstone et al., 2008). Despite more than two centuries of
formal psychological research and millennia of informal speculation,
there is no well-established body of fine-grained data about human
action in most tasks. By providing such fine-grained data on realistic
tasks, active tasks can produce data that enable both hypothesis-testing
and exploratory or observational work, sometimes even in the same
experiment.

1.2. Developing active tasks with USE

Active tasks may be appealing, but they are more challenging to
develop, control, and analyze than static tasks. USE was developed to
make these challenges more manageable. The practicality and scope of
USE make it a versatile alternative to experimental creation and control
suites such as the Psychtoolbox (Brainard, 1997; Kleiner et al., 2007;
Pelli, 1997), PsychoPy (Peirce, 2007, 2008), or MonkeyLogic (Asaad
and Eskandar, 2008a, b; Asaad et al., 2013; Hwang et al., 2019), with
the specific focus of creating, controlling and analyzing tasks that have
the complexity, dynamism, and visual fidelity typical of video games.
USE also provides unique solutions to common challenges of experi-
mental control (see 5.2) that set it apart from other active experiment
creation suites (Brookes et al., 2018; Doucet et al., 2016; Jangraw et al.,
2014).

USE provides an integrated solution for development, timekeeping,
and analysis components required for typical experiments (Fig. 1). The
remainder of this paper delineates each of these components. For the
development component, a set of scripts for the video game engine
Unity enables the development of nested hierarchies of experimental
control, as well as tools for common experimental requirements (data
collection and recording, communication with other programs and
equipment, etc). For the timekeeping component, the suite incorporates
the USE SyncBox, an Arduino-based timing and I/O hardware system, to
relay signals and codes between experimental hardware, and to main-
tain a central time record. This can send either event codes or simple
pulses to other experimental equipment, and track the current monitor
status using light sensors placed on the monitor, which allows the de-
tection of any skipped or stuck frame (currently only in post-proces-
sing). Finally, for the analysis component, the suite includes a set of
Matlab scripts for offline data parsing and timestream synchronization.

USE allows flexible experimental protocols built around (i) active or
static experiments, (ii) 2D and 3D displays, and (iii) touchscreen, joy-
stick or keyboard/button press interfaces. In addition, it provides an
interface for artificial agents that thereby can be tested with the iden-
tical settings used for experiments in humans or nonhuman primates.
We anticipate that the key strength of USE is to facilitate the design and
realization of active studies, though it can also be used to generate
static tasks, as we have shown in prior studies (Oemisch et al., 2017;
Watson et al., in press), enabling the comparison of active and static
task variants.

Links to the key components of USE, as well as manuals, tutorials,
and example experiments, can be found on our website (http://accl.psy.
vanderbilt.edu/resources/analysis-tools/unifiedsuiteforexperiments).

1.3. Goals of USE

In developing USE, we aimed to satisfy multiple criteria. The goal
was to develop a system that was:

• Temporally accurate and precise - all data should synchronize at
millisecond precision.

• Modular - all software and hardware components are developed so
that they can be used independently, or in different combinations.

• Generic - specific components can be easily adapted to multiple
purposes.

• Algorithmic - each component of the system is explained in a prin-
cipled way to facilitate implementation in other research contexts
using other hardware (e.g. a different microcontroller board) or
software (e.g. a different video game engine).

• Translational –functionally identical protocols can easily be gener-
ated for use with different groups of humans, non-humans, or arti-
ficially intelligent agents.

• Offline reconstructable - every monitor frame displayed during an
experiment can be recreated at will in offline analysis and combined
with synchronized information from any other data stream to re-
construct the experiment.

• Cost efficient - the software is all free, the total cost of the custom
hardware is under $500, and experiments can be developed and run
using any modern computer and consumer-grade monitor.

• Multi-platform - experiments can be developed on Mac OSX or
Windows computers, and run on any modern computer (including
Linux), smartphone, tablet, or gaming console, and can also be de-
veloped for the web.

• Portable - only a single computer, a small box for the arduino, two
light sensors and a small number of cables are required for complete
experimental control.

• Practical - the suite solves the key challenges in active experiment
implementation and organization, and does so in ways that are in-
tended to be as user-friendly as possible.

• Open source - all components of development and analysis software
and I/O data streaming should be freely available under open source
licenses.

One criteria we did not aim to satisfy was that developing experi-
ments be a completely novice-friendly process. In our experience, suites
which attempt to do so end up sacrificing generality, flexibility, and
power. Thus, designing an experiment in USE, while it is much easier
than doing so from scratch, does require a level of familiarity with both
Unity and general programming principles. Actually running experi-
ments created with USE, however, does not require any special
knowledge and can be simple enough to be the responsibility of the
undergraduates who are tasked with running more traditional studies in
many laboratories (see 4.2.7). That said, we expect as more labs become
involved in the development of active tasks, many programmatic
components that define the actionable environment will be re-used as
they are developed and shared through open-source collaboration, in-
creasing the ease of experimental design.

1.4. The Unity game engine

The experiment development and control software components of
USE are implemented in the Unity game engine. Game engines are de-
velopment environments that implement various functionalities that
games commonly require, such as the rendering of 2D and 3D graphics,
physics simulation, realistic lighting, animation, sound management,
etc. Unity is a free (but not open source) engine that runs on Windows,
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Macintosh, and Linux computers, supports building games for all major
computers, phones, tablets, and game consoles, and has built-in support
for stereoscopic presentation. Games made with Unity were down-
loaded over 5 billion times in Q3 2016 alone (Unity Technologies,
2017a). Some recent games of note made with Unity include Cites:
Skylines (Colossal Order, 2015), Her Story (Barlow, 2015), Kerbal
Space Program (Squad, 2015), Pokémon GO (Niantic, 2016), and Super
Mario Run (Nintendo EDP, 2016). Aside from its price, Unity is at-
tractive to small and medium-sized developers due to its relative ease of
use, full feature set, comprehensive tutorials, and active online forums
(Unity Technologies, 2017b). USE scripts are all written in C#, which as
of 2019 is the only language supported by Unity.

1.5. Specific challenges of active tasks

Building an experimental suite on top of a game engine presents
several unique challenges. First, game engines must ensure that all re-
quired commands are run in time for frame rendering to be carried out,
but the precise execution order below the frame rate is often irrelevant,
and commands can be spread across many scripts, making it difficult to
follow their interactions. Command execution order in USE is guaran-
teed by a novel state-based system (cf. Wagner et al., 2006) that enables
the generation of nested hierarchies of control, such as the experiment-
block-trial structure common in cognitive studies (section 4.2). As an
example of the general utility of state-based control systems for ex-
periment development, a state-based system has been used to create
electrical engineering experiments in Unity exists (Liao and Qu, 2013),
but its use case is sufficiently distinct from cognitive neuroscience that
it is untransferable.

Second, just as control below the level of a frame can be difficult to
achieve, accurate timing below the level of a frame is, for most practical
purposes, unavailable within Unity. Indeed, it is difficult even to as-
certain frame onset times, complicating synchronization of displays
with other experimental hardware such as neural acquisition devices.
To solve this, USE incorporates a newly designed, dedicated SyncBox
hardware, which acts as a central timekeeper, a generic

communication/synchronization device, and also uses data from light
sensors to track the current frame status (section 4.3).

Finally, for studies that incorporate eyetracking, identifying gaze
targets in a 3D scene rendered on a 2D screen is difficult, particularly
when objects have complex shapes and the subject freely navigates
through the 3D environment. In most static tasks, an Area of Interest
(AOI) is defined around each object, with a larger radius than the object
itself to account for measurement imprecision and the spatial extent of
the fovea. This is much more difficult and computationally-intensive in
active tasks, as objects’ two-dimensional silhouettes on the screen can
be difficult to determine, and can change drastically from frame to
frame. Our solution involves a novel method named Shotgun Raycast,
which detects all objects whose two-dimensional silhouette falls within
a specified number of degrees of visual angle from a gaze point on the
screen (section 4.4).

These novel contributions extend Unity’s robust physics and ren-
dering capabilities, and make it a suitable platform for behavioral
neuroscience research.

1.6. Enabling translational research: human, non-human, and artificially
intelligent agents

Our laboratory uses healthy human undergraduates, neurosurgery
candidates, macaque monkeys, and artificial (reinforcement) learning
agents to run tasks with a variety of different input mechanisms and
recording devices. It was critical for us that USE be able to generate
comparative task structure and data across all these groups. USE en-
ables this in several ways. First, experimental protocols can be adjusted
to meet the needs of different participant groups, such that different
protocols using the same functional logic can be run from the same base
scripts with small changes to configuration files (see 4.2.3). Second, an
input broker enables entirely different inputs (for example, touchscreen
presses, button clicks, fixations, or selection by an artificial agent) to
produce the same effect in a trial (see 4.2.4). Finally, an artificial in-
telligence (AI) wrapper enables two-way communication with different
learning agents (see 4.2.5), similar to existing AI testing platforms (e.g.

Fig. 1. Unified Suite for Experiments allows
strong experimental control in immersive
tasks. Immersive, dynamic tasks present un-
ique challenges to experimental control. To
address these, USE includes novel contribu-
tions for (A) software, (B) Hardware, and (C)
analysis tools. (A) USE employs a novel state-
based control system that underpins its strong
experimental control. Realtime I/O is based on
current industry standards. USE also allows
experimentalists to flexibly define and collate
data occurring at multiple experimental time-
scales, and online visualization of subject’s
performance. (B) The USE SyncBox is a newly
developed, dedicated, and inexpensive ma-
chine that allows synchronization of different
data streams (such as joystick data, eyetracker
data, and game data), and can communicate
with other hardware. As well, custom built
photo-diode solution allows for the precise
detection of physical frame onsets. (C) USE
also contains a number of post-hoc analysis
scripts, including a way to align all data
sources, and reconstruct subject’s gaze.
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Beattie et al., 2016; Leibo et al., 2018; OpenAI, 2018). If desired, full-
resolution screenshots can be sent on every frame to visually-guided
agents that can learn fully active tasks, as have proved influential in
recent years (e.g. Mnih et al., 2015; Wang et al., 2018), as well as more
traditional models that operate on simple digital vectors that represent
static features of interest in the scene (e.g. Kruschke, 1992)

1.7. Online resources

Three Supplemental files are hosted with this paper:

• A review of the revised gaze classification algorithm used in our task
(see 4.4.3 and 5.4).

• A detailed description of the timing tests performed on the USE
SyncBox (see 5.1).

• A description of the normalization procedure used to produce Fig. 6.

As previously noted, all USE manuals, scripts, schematics, and tu-
torial are available via the USE website (http://accl.psy.vanderbilt.edu/
resources/analysis-tools/unifiedsuiteforexperiments/).

1.8. Outline

In the remainder of the paper we outline an experiment that pro-
vides specific examples of the various components of USE in action
(4.1), before turning to an overview of USE’s experimental design and
control software (4.2), timing and communication hardware (4.3), and
offline analysis capabilities (4.4). We then present results demon-
strating the robust timing and control capabilities of USE (5) and dis-
cuss the implications of this work (6).

2. Methods

2.1. Example experiment

Static tasks built with USE have already been published (Oemisch
et al., 2017; Watson et al., in press), but to demonstrate more of the
suite's capabilities, we briefly present an active learning task, in which
participants must navigate through a 3D scene, interact with objects,
and try to learn a reward structure. A full overview of the task and
results will be presented in another manuscript (Watson et al., in press),
here we focus on reporting sufficient detail to show USE’s capabilities.

Figs. 2a and b display the task environment and trial protocol. In
brief, participants must choose between two objects on each trial, one
of which is rewarded and one of which is not, and they must learn the
rules that govern reward through trial-and-error. Trials consist of par-
ticipants navigating through an arena using a joystick, picking up one of
the two objects by walking over it, and taking it to a door where they
receive visual feedback on choice accuracy. The two objects are se-
lected from a pool of 16 (Fig. 2c, cf. Watson et al., in press), which are
parametrically-defined by four feature dimensions (shape, colour, pat-
tern, and arm direction) of two possible values each. In each block there
are two rules, both of which reward a single feature value, but each of
which only applies in a single context (symbolized by the arena floor).
For example, objects with pyramidal body shape might be rewarded on
grass floors, while objects with downward-bending arms rewarded on
marble floors (Fig. 2d). Once participants have achieved satisfactory
performance on a block, new rules are generated, and a new block
begins. Participants are explicitly informed of each block change, and
told that they will now have to discover a new pair of rules.

50 participants ran in the study for approximately one hour each.
Two participants were excluded due to chance performance. Gaze was
tracked using a Tobii TX300 combined head-free eyetracker and OLED
monitor (Tobii Technology, Inc.). Fig. 2e demonstrates that over the
course of a block they learned to make more accurate choices, to make
these choices more rapidly, and to preferentially fixate the rewarded

object over the unrewarded one (see 4.4.3 for details of how fixation
targets are determined in USE).

Fig. 2F surveys the display configuration, structure, and response
mode of several of the other experiments that have already been coded
in USE.

2.2. USE: Unity Suite for Experiments

2.2.1. States and Control Levels
Most software commands in USE are controlled by an architecture

of States and Control Levels, which allow experiments to be defined as a
series of hierarchical finite state machines (Wagner et al., 2006). This
State-Level architecture is flexible enough to support any standard ex-
perimental hierarchies such as experiment-block-trial, as well as more
complex structures. Here, we explain their abstract functional role and
give examples of their use in the experiment described in 4.1

A State is an object (in the object-oriented programming sense) that
defines the operation of the experiment during a period of time
(Fig. 3a). These are organized in Control Levels that group States that
operate at similar levels of abstraction in the experiment (Fig. 3b). In
the example experiment, a Trial Level groups together the States that
define the various trial epochs, while a Block Level groups together
States that define the block sequence, and passes control to the lower
Trial Level as needed, and an even higher Main Level groups the States
that govern aspects of the experiment outside the Block (Fig. 3c). Thus,
States can be used to define both the finest-grained and the most gen-
eral parts of the experiment.

Each State specifies commands that are run every frame while it is
active, and initialization and termination commands to be run at the
start of its first and the end of its last frame, respectively. For example,
the Fixation State of the example experiment’s Trial Level determines
what happens when the participant stands in front of a door before
entering the arena. At the start of the first frame in which an experiment
enters a new State, a StateInitialization method runs. For the Fixation
State, this method turns a circle on the door blue, cueing the participant
to look at it. Within each frame of a State, a number of method groups
run, controlling Unity’s update cycle (for full details of the update cycle,
see the USE manual). For the Fixation State, these methods control the
size of the blue circle, which shrinks as it is fixated, and the position of
the door, which opens after the circle has completely shrunk. The up-
date cycle is followed by StateTerminationCheck methods that verify
whether any end conditions for the state have been reached. For the
Fixation State, there is a single condition: is the door fully open? If one
of the end conditions has been met, a StateTermination method group is
run at the end of the last frame of the state, and the experiment tran-
sitions to a new State on the following frame. If no end conditions have
been met, the current State’s update cycle methods run again on the
following frame. For the Fixation State, the StateTermination method
starts opening the door, revealing the main arena behind it, and on the
following frame the Trial Level transitions to the Explore State.

States are grouped together in Control Levels (Fig. 3b). Any State in
a Control Level can transition to any other State in the same Level.
These transitions are defined by TerminationSpecifications, each of
which includes (a) a StateTerminationCheck, (b) a StateTermination,
(c) a successor State, and (d) the StateInitialization of the successor
State that will be run. By defining the States that make up a Level, and
the desired transitions between them, an experimenter has defined the
finite state machine that constitutes that Level.

Like States, Control Levels have Initialization and Termination
methods. LevelInitialization and LevelTermination methods run once
each, at the start of the first frame (prior to any StateInitializations) and
end of the last frame (after any StateTerminations) in the Control Level,
respectively.

2.2.2. Hierarchical State/Level organization
A critical aspect of USE is that Control Levels can be children of States,
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Fig. 2. Example USE experiment. Details of one experiment coded in USE, and brief sketches of several others (A) An overhead view of the task arena. (B) An example
trial sequence. Trials are separated by an ITI where most of the screen is black, but the avatar’s hand and their reward history is visible. Participants begin in one of
the four corridors at the corners of the arena, facing a closed door. Fixating a white dot at the centre of a larger blue circle on the door opens it, revealing the arena.
Participants then navigate towards one of the two objects in the arena and pick it up by walking over it. Finally, they take the object to any of the other corridor
doors, where they are given visual feedback on their choice accuracy. (C) Set of objects used in the experiment (Watson et al., in press). Each object is defined by four
feature dimensions (body shape, color, arm position, and pattern), each of which can take on two specific values (e.g. pyramidal or oblong, red or orange, etc). (D) An
example reward structure that participants must learn in a given block. Objects are presented in one of two contexts, defined by the floor of the arena. Each context
has an associated relevant feature dimension, and one rewarded feature value in that dimension. In this example, the objects presented in context 1 are rewarded if
their body (feature dimension) is pyramidal (feature value). Thick lines and large font highlight the path towards the rewarded feature value, whereas small lines and
font denote a path towards unrewarded values. (E) Accuracy, time from door opening to object pickup (normalized by dividing by the distance from door to object,
and z-scoring within each participant), and number of fixations pre-pickup to rewarded target objects and unrewarded distractor objects. Shaded areas indicate
standard error of the mean. (F) Other examples of experiments coded in USE. (Top) These tasks can have richly detailed or simple stimuli, in various degrees of
interaction between player and environment. (Bottom) USE can support different inputs as required by the specific experiment.
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allowing Control Levels to pass control to sub-Levels. This guarantees
that commands run within the experimenter-defined order, ensuring
that the subject’s experience is as the experimenter had intended.

The State/Level architecture governing the example experiment
(4.1) is visualized in Fig. 3c. The Main Level is the top level of the
hierarchy, which defines high-level States such as setup, eyetracker
(gaze) calibration, and the task itself. The eye tracker State has an as-
sociated Eyetracker calibration Level, which itself has multiple States
associated with it (presentation of the calibration dot, analysis of the
estimated gaze location, experimenter acceptance or rejection of the
calibration results, etc). Once this has been completed, we progress to
the Main Task state. This has embedded within it a Block Level, which
itself has a Trial State that passes control to a Trial Level. In this ex-
ample, there are four trial States – inter-trial interval, fixation, ex-
ploration, and feedback — each of which will include its own in-
itialization, update and termination methods. We have described these
in detail for the Fixation State above.

Once all trials in a block have been completed, the Block Level’s
TerminationCheck verifies if there are blocks remaining in the experi-
ment. If so, the Block Level loops back to the beginning, and a new
round of trials begin, but if not, the Block Level ends and the Main Level

shifts to an End Experiment State, which performs various house-
keeping functions before closing the application.

We anticipate that the large majority of experiments will use at least
a two-level hierarchy of Block and Trial Level, and that more complex
experiments will benefit from a top-level Main Level, as used in the
example experiment. State and Level logic provides a flexible way of
designing experimental hierarchies, while maintaining precise control
over the order of commands during Unity's primary update loops.

2.2.3. Selective reuse of States for different experimental protocols
It is quite common, particularly in translational research, for mod-

ifications of the same basic experimental protocol to be used in different
experiments. For example, non-human primates typically require a fluid
or pellet reward in addition to visual feedback for correct performance,
while artificial agents might require only an abstract numeric re-
presentation of stimuli, without any visual input at all. Such mod-
ifications are often implemented by copying and pasting large chunks of
code between experiments, which inevitably results in unintended
differences, as later changes do not propagate across the different
versions. Another solution is to gate portions of code using if or switch
statements, which quickly makes code extremely hard to follow as the

Fig. 3. State/Level organization allows for
flexible and strong experimental oversight.
Depiction of (A) State and (B) Control Level
architecture and their interaction in (C) an
example experiment. White rounded rectangles
denote groups of user-defined methods, dia-
monds represent Boolean conditions. Dashed
lines with arrowheads represent the relation-
ship of parent States and their child Control
Levels. Dotted lines from all four corners of a
State illustrate the zoomed-in view of the in-
ternal components of the state itself (not of
child Control Levels). (A) A State contains an
Initialization method group that runs only once
at the start of the first frame in which the State
is active. The Unity update cycle runs each
frame until a Termination Check returns True,
at which point the Termination method is run.
(Actual States are somewhat more complex
than illustrated, as it is possible to have an ar-
bitrary number of Initializations, Termination
Checks, and Terminations.) (B) A Control Level
defines the States that can transition to each
other. An Initialization method runs once the
first time a Control Level becomes active. Only
one state is active at any one time, and its
Update/Termination Check cycle runs during
each frame, after which the Control Level’s
Termination Check is run, and if it returns true
the Control Level’s Termination method runs.
(C) Control flow of an example experiment,
illustrating that Control Levels can be children
of States. (This is only an illustrative portion of
the full task hierarchy.) This allows nested
control within frames, but also guarantees
control across frames. The Main Level is the
highest level of control. After completing an
Initiation and Instruction State, the Level en-
ters a Calibration State, which contains a
lower-level Sequence that itself has multiple
states. After completing this, the Main Task
state is run, which also has a nested Block
Level, which itself has a Trial State and asso-
ciated Trial Sequence. Here, we explicitly il-
lustrate the Fixation State within the Trial
Sequence, and the processes operating during
this State.
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number of cases mounts.
USE simplifies this process by enabling experimenters to define

more States than are necessary for a single experiment, and to select
which of these States will be included in a given Control Level at run-
time simply by listing their names when defining States. Thus, it is easy
to generate highly similar experiments that differ only in a few trial or
block States, guaranteeing that the logic they share will remain con-
stant even after later edits to code.

2.2.4. Input broker
Changes to experimental protocols often require very different ac-

tions to have similar effects. For example, our laboratory has run stu-
dies where objects are selected by keyboard button presses, touchscreen
touches, fixations, or with the output of an artificial learning agent (see
Fig. 2f). A dedicated input broker is used to handle all of these cases and
can be customized to support whatever input methods are needed for a
given experiment.

2.2.5. AI wrapper
Artificial learning agents implemented in any language can interact

with USE and play through the same experiments as human or animal
participants, using the suite’s AI wrapper. These agents can act based on
representations of the environment that consist either of a numerical
vector (e.g. different object feature values would be encoded as dif-
ferent numbers), or a screenshot of the current frame. To integrate an AI
with a USE task, three core functions must be implemented: 1) Reset –
starts/restarts the task, and configures the wrapper to use numerical
representation or screenshots to represent the environment. 2) Step -
moves the environment to the next step, and outputs its numerical or
image representation. 3) Act - takes an action as an input parameter and
returns the result of applying this action on the environment, including
reward value and indicators of whether the current trial, block, or ex-
periment has ended.

The USE suite includes a Unity-hosted TCP server to serve AI player
requests, and a python library that implements a TCP client. Any py-
thon-based artificial learning agent that can operate using the Step and
Act functions described above can interface with the client, and thus
run any tasks developed in USE. The tutorial includes a simple python
agent as a demonstration of these capabilities.

2.2.6. Data control
USE incorporates a generic DataController class that enables the

flexible collection and writing of as many data streams as may be de-
sired, and writes these to text files. These can include variables of any
type, and each DataController object is independently controlled,
meaning that data can be collected and written at different frequencies.
For example, it makes sense to collect positions of the camera and
moveable objects every frame, while trial accuracy might only be up-
dated once every few seconds, and block-level information might be
generated every few minutes.

Importantly for timing and later analysis purposes, in our studies we
generate FrameData files, which are updated every frame and include
the positions, rotations and sizes of all objects for which these values
can change (see 4.4.2), as well as the current expected state for each of
two flickering patches beneath the light sensors used for timing align-
ment (see 4.4.1).

2.2.7. Initialization screen and experimenter view
When running a USE experiment, our laboratory employs a two-

monitor setup, one for the experimenter and one for the participant (see
Fig. 4). The experimenter’s screen allows various factors to be specified
both at the start of an experiment and during its runtime. These are
intended to allow individuals who may not have the programming
experience to develop a task to nevertheless be able to control it at
runtime, as needed in many laboratories.

At the start of an experiment, a customizable initialization screen is

displayed. This can include file selection dialog panels enabling the
selection of configuration files, as well as text boxes, Boolean check
boxes, and numeric sliders, to specify information that might be desired
for the experiment (e.g. subject ID, condition, or duration of different
trial States). Each of these can be set to display the previously-chosen
value as a default, or some function on this (e.g. subject numbers can be
set to automatically iterate with each session).

Throughout an experimental session, the experimenter’s monitor
displays three main components: (1) a panel showing a stream of ex-
actly what the participant is viewing on their monitor, with overlaid
real-time gaze or touch positions if desired, (2) text panels displaying
real-time information of various kinds, such as messages from hard-
ware, or summary information about participant performance, and (3)
text dialog boxes, Boolean check boxes, and sliders. The interactive
components in (3) can be used to modify experimental variables in real-
time.

All components of both the initialization and experimenter view can
be customized using Unity’s editor and external configuration files.

2.2.8. Realtime I/O
USE handles real-time communications with other software and

hardware via SerialPortController and UDPPortController objects,
which include methods for setting up ports, reading incoming data from
system buffers, storing it in USE-specific buffers for use by other
methods, and clearing these buffers. For instance, we communicate
with a python script controlling our eyetracker via UDP, and with the
SyncBox via serial. One special case of serial data are event codes,
which are handled by a specific EventCodeController and sent to the
SyncBox. Typically, codes are prepared a frame in advance, and sent as
quickly as possible after the new frame onset. However, Unity’s internal
limitations mean that the latency between frame onset and event codes
is less stable than might be desired, and for millisecond precision event
code timestamps are adjusted with automatized scripts in offline post-
processing (see 5.3).

2.3. The USE SyncBox – timekeeping and communication

The USE SyncBox is used to channel communication between ex-
perimental hardware during an experimental session, and to generate a
single, highly accurate timing record that enables the time-alignment of
the various data streams produced by these different pieces of hard-
ware, as well as the physical onset of frames on an experimental dis-
play. It consists of a commercial Arduino Mega2560 r3 board with
custom firmware and a custom shield connecting it to a number of I/O
ports. Fig. 4 shows how the box might be used in a typical experiment.

In the laboratories we have used the SyncBox, it has been used to
send event codes to different neural acquisition devices (Neuralynx,
BrainAmp, and Neuroscan systems), simple timing pulses to Tobii
eyetrackers, and commands to control fluid and pellet dispensers used
to reward non-human primates for performance on tasks. It has also
been used to receive signals from the light sensors described in 4.3.1, as
well as from a custom joystick. Other I/O capabilities can be added by
modifying the firmware, and, if necessary, building an adapter to
modify the layout of the event code lines. The SyncBox is thus a multi-
purpose I/O device that can be used in a variety of experimental set-
tings and quickly adapted between setups.

The two-way connection to the experimental computer is over a
USB serial port. There are eight digital I/O channels connected to BNC
jacks, five analog input channels also connected to BNC jacks, and 16
digital output channels connected to a 34-pin rectangular connector.
Two of the analog inputs are dedicated to receiving data from light
sensors attached to the participant monitor, which are fed through a
pre-amplifier circuit which performs amplification, low-pass filtering,
and DC subtraction on the light sensor signals (see the Syncbox
Manual). In the example experiment (4.1), one digital channel was used
to output a timing pulse every second that was received by a Tobii
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TX300 eyetracker, while the rectangular port was used to send event
codes to a Neuralynx Digital SX Lynx SDSata acquisition system. Full
details of all hardware are available on the USE website.

Full firmware details and code are also available on the USE web-
site. In brief, the box runs an interrupt-driven loop every 0.1 ms, and a
host communication loop that runs as quickly as possible, but without
guaranteed timing. The host loop controls all communication over the
serial port with the experimental computer, The interrupt-driven loop
reads from and writes to all other inputs/outputs and maintains in-
formation about scheduled events.

The host computer can issue commands to the box over the serial
port to control most aspects of its functioning, including event timing
and the interval at which data is reported. The example experiment
(4.1) received data with a sampling interval of 3.3 ms, and faster re-
ports are possible. Details of the box’s timing capabilities are found in
5.1.

2.3.1. Frame detection using light sensors
To precisely track frame onsets and detect skipped frames (where an

expected frame is not rendered) or stuck frames (where a single frame
persists for two or more frames), we place the box’s light sensors over
two small patches at the top corners of the experimental display (see
Fig. 4). One patch changes from black to white every frame (timing
patch), while the other encodes a binary sequence (coding patch), spe-
cifically the 24-character sequence consisting of the 3-digit binary re-
presentations of the numbers 0-7. Deviations from the expected timing

and sequence of blacks and whites can then be detected, and skipped or
stuck frames identified (5.2). Light sensors were housed in custom 3D-
printed clamps that fit a wide range of monitors (.STL files for 3D
printing available on our website).

2.3.2. Time synchronization with external devices
There are three ways of syncing the time streams of external devices

with the USE SyncBox, and thereby the rest of the experimental
equipment. First, devices can receive up to 16-bit event codes sent on
command over the USE SyncBox’s rectangular port (e.g. the Neural
Data Acquisition box in Fig. 4). Second, they could receive regular
pulses sent over one of the USE SyncBox’s single digital ports (e.g. the
eyetracker in Fig. 4). Finally, they could themselves send data to the
USE SyncBox (e.g. the joystick in Fig. 4). Custom adapters may need to
be built for any of these purposes, and we provide schematics of
adapters that alter the rectangular port’s output for Neuroscan and
BrainAmp acquisition systems on the USE website. Connecting an ex-
ternal device’s output to the USE SyncBox may also require modifying
the USE SyncBox’s firmware.

If devices are not connected to the USE SyncBox in this manner,
their time synchronization will be limited by Unity’s update cycle.
Thus, a standard consumer-grade joystick or keyboard connected over
USB will have an unavoidable jitter of up to a frame (16.7 ms on a
standard monitor), as well as any delays introduced by the ports
themselves.

Fig. 4. Example Connectivity diagram showing
full capabilities of USE. A typical setup em-
ploying the full USE suite. (A) The participant
setup (left) are those components of the ex-
periment visible to participants, including the
monitor, joystick, eyetracker, and light re-
ceptors. The virtual environment is displayed
on the monitor, participants move through it
using the joystick, and the eyetracker records
their gaze behaviour. The monitor has patches
in the top corners that change between black
and white to indicate frame changes, which are
picked up by the light receptors. The monitor is
controlled directly by the experimental com-
puter over its input line. Joystick output and
photo-diode signals are communicated to the
USE SyncBox. (B) The experimental setup in-
cludes the experimental computer, USE
SyncBox, neural data acquisition device, and
reward dispenser. The experimental computer
runs the experiment, controls the monitor, and
sends commands to the USE SyncBox. The USE
SyncBox can forward event codes for time
synchronization to the neural acquisition de-
vice, TTL pulses as needed to control a reward
dispenser, or regular TTL pulses used for time
synchronization to the eyetracker (TTL pulse).
The experimental computer is directly con-
nected to the participant display and eye-
tracker (1), all other communication is fun-
neled through the USE SyncBox, whether from
control computer to the peripheral device (2)
or from the peripherals to the control computer
(3). Lines denote communication from one
component to another, with the arrowhead
showing the direction of signals. Red is used to
highlight those lines that allow post-hoc tem-
poral alignment. (C) Photos of a USE SyncBox,
its ports, and the custom clamp used to hold
light receptors in place over participant moni-
tors. All files and instructions needed to create
these are available on the USE website.
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2.4. Analysis pipeline

2.4.1. Time-alignment of data files
The various data files produced during an experiment are produced

by devices using different clocks, which all need to be aligned to a
single timestream. In the current USE version, this happens offline.
Generally speaking, experimental hardware receives timing pulses or
event codes from, or sends digital signals to, the USE SyncBox.
Alignment is then a simple matter of assigning USE SyncBox time-
stamps to each matching code or pulse, either received or generated, in
the other hardware’s data.

Alignment with data produced internally by the host computer, and
with the physical state of monitor frames, is performed in a separate
script. The frame-by-frame data stored during the experiment (3.2.7)
includes the putative current status (black or white) of each of the two
patches under the light sensors connected to the USE SyncBox, as re-
ported by Unity. By analyzing the sensor voltages over the course of the
experiment, the physical state of these patches on each frame is de-
termined (see 5.2). Any skipped or stuck frames can then be identified
by comparing the states of the clock and signal sensor, and the physical
onsets of each frame, as opposed to Unity’s estimated onset times, are
determined. The frame data can then be modified to reflect the actual
status of every single frame in the experiment. At this point, time
alignment of all data is complete, as all datastreams are referenced to
the USE SyncBox’s timestamps, and can thus be directly compared with
each other.

2.4.2. Experimental session reconstruction
During a typical experimental session, the frame-by-frame position,

rotation, scale, and other properties of interest for each object in the
scene is recorded in a FrameData file (4.2.6). This enables the complete
reconstruction of the experimental session. During reconstruction,
Unity's physics engine is ignored, and instead each object is directly
assigned its properties as recorded. Each replayed frame contains a
perfect re-presentation of the three-dimensional scene, including the
camera's position, and thus the image on the monitor is identical to that
originally seen by the participant. A video of the entire experimental
session, or simply particular moments of interest, can be generated
offline, with no need to record during the session itself. In the current
version of the suite, this frame-by-frame reconstruction requires custom
code modifications for each experiment, a process that we intend to
streamline in future version updates.

Other suites have replay capabilities (e.g. Jangraw et al., 2014),
which USE extends in several ways. First, gaze positions, mouse or
touchscreen clicks, or data recorded by other equipment during the
session can be overlaid on the screen. Also, since all skipped and stuck
frames are known (see 4.3.1), replays are perfect representations of
what was actually displayed. Individual frames can be exported at full
or reduced size and analyzed at will, for example using saliency esti-
mation algorithms (e.g. Borji et al., 2014). Finally, gaze targets can be
determined, as described in the following section.

2.4.3. Gaze target determination
We smooth and classify gaze data using a modified version of an

existing algorithm that provides superior processing of active gaze data
(Andersson et al., 2016; Corrigan et al., 2017; Larsson et al., 2013,
2014; Nyström and Holmqvist, 2010), adapted to handle noisier data by
using estimated angular acceleration (Engbert and Kliegl, 2003;
Engbert and Mergenthaler, 2006) and robust statistics (Leys et al.,
2013; Wilcox, 2012). Supplementary Methods 1 provides details of the
algorithm. The results of this classification are detailed in 5.4 below.

After smoothing and classification, gaze targets can be determined
(Fig. 5). The logic here is something like the inverse of gaze target
determination in typical static tasks, in which an AOI is specified
around an object of interest, and gaze points that land within this AOI
are treated as landing on the object. In USE, any object whose two-

dimensional silhouette on the screen lies within a specified distance
from each gaze point is treated as a potential target of that point. For
any frame of interest, the corresponding gaze points are identified, and
a ShotgunRaycast method is used to determine which objects have been
foveated (Fig. 5A). This defines a conical section filled with multiple
raycasts in Unity’s three-dimensional worldspace, whose smaller end is
a circle centered on the gaze point, placed exactly on the camera (i.e.
the surface of the screen). The larger end is defined such that its sil-
houette on the camera is identical in size and location to the smaller
end. Thus, if any of the rays intersect with an object, its two-dimen-
sional silhouette on the screen lies within the circle defined by the
smaller end, i.e. is within the desired degrees of visual angle of the gaze
point. The function returns a complete list of all objects hit by the rays
making up the conical section. The density of sampling and the radius
of the circle surrounding the gaze point are experimenter-defined.

Whether a gaze target is reliably detected depends on the shape of
its associated mask, or collider, which defines the surfaces that raycasts
can hit (Fig. 5B). A mesh collider that perfectly matches the shape of the
object will also result in perfect detection, but for shapes defined by a
high number of polygons, mesh colliders are computationally ex-
pensive. Simpler shapes (usually spheres) are computationally cheap
but involve a tradeoff in detection accuracy. Various intermediate
collider types can be used to define shapes with greater or lesser de-
grees of fidelity to the precise object shape. Which one experimenters
use will depend on their particular needs. For most of the 3D objects
used in our studies (Fig. 2C; Watson et al., in press), the high fidelity
afforded by a mesh collider does not come at a high enough compu-
tational cost to warrant concern.

After replaying the session using shotgun raycasts for each gaze
point, the experimenter then has the sample-by-sample specification of
all objects falling within the desired degrees of visual angle from each
gaze point, which can be further analyzed according to gaze type (e.g.
fixations, smooth pursuits), or objects, as required by the experiment
(see 5.4).

3. Results

3.1. USE SyncBox timing

The USE SyncBox enables digital signals to be generated with low
latency and high precision (on the order of 0.1 ms for both).
Specifically, digital timing pulses are generated with a clock stability of
100 ppm and jitter between pulses of approximately +/- 0.02ms.
When commanded to send a single digital pulse or event code, the delay
between trigger and output is 0.01 to 0.11ms, limited by the box’s
scheduling interval of 0.1 ms. Analog signals are digitized at 1ms in-
tervals with sample timing known to 0.1 ms accuracy. Light sensor
signals pass through a pre-amplifier before digitization, which causes
an additional delay of 0.33ms.

Full details of the tests supporting these timing specifications are
found in the Supplementary Material 2.

3.2. Frame detection

To quantify the performance of frame detection and frame onset
determination for a monitor with 60 Hz frame rate, signals were re-
corded from the clock and signal light sensors over approximately 1.5 h.
The data for each sensor was analyzed by identifying peaks and troughs
in the first derivative of the voltage trace, where intervals peak-to-
trough were classified as black frames, while trough-to-peaks were
classified as white. The median duration of black or white periods in the
clock signal was 16.7 ms. In the entire test period, there were exactly 32
periods (of a total of 336,722, ˜0.0001%) whose duration was not
within 3.3ms (one reporting interval) of 16.7, 33.3, 50.0, or 66.7 ms.
Thus, effectively all white and black periods have a duration that cor-
responds to an integer multiple of the expected duration of a single
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frame on a 60 Hz monitor. Any frame where this multiple is greater
than 1 constitutes a skipped or a stuck frame, which can be identified by
investigating the corresponding coding patch’s data.

3.3. Frame onset to event code timing

A critical question for many neuroscientists will be what is the re-
lationship between the physical onset of a frame and timing signals sent on
that frame? We tested this by connecting an oscilloscope to (a) light
sensor placed on the host computer's monitor, and (b) one line of the
USE SyncBox’s rectangular port. A USE script was written to alternate
the patch of the monitor below the light sensor between black and
white every frame, and to send an event code as rapidly as possible at
the start of each frame.

Timing was referenced to event code output. The duration between
frame onset and event code onset was stable but inconsistent. During
any given stable interval, it was approximately constant with a jitter of
about +/- 1ms, but when there were disruptions to frame refreshes,
and the patch did not flicker from black to white for two or more
frames, the offset reset itself. Stable frame offset values were approxi-
mately 0–10ms. This means that offsets between frame onset and event
code onset are stable over periods of tens of seconds or longer, but are
not known a priori or repeatable between stable periods. There is no
Unity-controllable way in which this can be improved on, due to the
imprecision of Unity’s internal estimates of frame onset.

In summary, the timing of USE is typically precise, but contains
unpredictable (non-systematic) glitches, which makes it necessary to
run offline scripts to achieve sub-millisecond synchronization with
frame onsets. We provide post-processing scripts that implement the
accurate sub-millisecond time synchronization of frame onsets to event
codes and other experimental hardware (see 5.2).

3.4. Gaze classification

Gaze data from participants in the example experiment were clas-
sified using the algorithm described in 4.4.3. Table 1 shows that the
velocities, amplitudes, frequencies and durations of each classified gaze
period are as in previous psychophysical studies (Andersson et al.,
2016; Nyström and Holmqvist, 2010; Otero-Millan et al., 2008). Fur-
thermore, saccades exhibit the classic main sequence (Fig. 6a), in which
velocity and amplitude are linearly related, with an inflection point
occurring between 10–15° (Inchingolo and Spanio, 1985).

After determining fixation targets using ShotgunRaycast (4.4.3),
fixations to both target and distractor objects were used to generate a
heatmap of normalized fixation locations on objects, showing that
participants tended to focus on object centres, though there were also a
smaller number of fixations to their peripheries (Fig. 6b), as one might
expect in such a task (see Supplementary Materials 1 for an explanation
of how normalized fixation locations were determined). Finally, parti-
cipants began to preferentially fixate targets over distractors later in the
block, showing that their gaze behaviour reflected their rule-learning
(Fig. 2e), as has been shown in previous static studies of categorization
learning (cf. Blair et al., 2009; Rehder and Hoffman, 2005; McColeman
et al., 2014).

4. Discussion

4.1. Overview

The Unified Suite for Experiments is a complete integrative suite for
the development, control, and analysis of active tasks, simplifying a
number of crucial challenges facing researchers interested in more
realistic stimuli and possibilities of control. Its State/Level architecture
supports nested hierarchies of control that enable the generation of
tasks of any degree of complexity, the USE SyncBox enables reliable

Fig. 5. ShotgunRaycast allows gaze target de-
termination in a 3D world. (A) Moving through
a 3D world means that the size and shape of the
silhouette of an object on the screen constantly
changes, making it a challenge to determine
gaze targets. The ShotgunRaycast solves this
challenge. It defines a conic section, beginning
with a circle on the camera and ending with a
larger circle a long distance into the world
space, which has the same center on the screen
and whose projection onto the screen subtends
exactly the same angle. This has the effect of
finding any objects whose silhouette on the
screen lies either completely or partially within
the circle defining the smaller end of the conic
section. Experimentalists define the density of
sampling, and radius of the circle in degrees of

visual angle. (B) Detection of an object depends on the shape of the collider associated with it. Simple colliders (e.g. spheres; left, middle) are computationally
inexpensive. However, they are inaccurate, either because raycasts miss the object - resulting in false negatives (left) - or raycasts hit the outside of an object -
resulting in false positives (middle). Alternatively, mesh colliders that perfectly match the shape of an object are perfectly accurate, but are computationally
expensive when the object is defined by a high number of polygons.

Table 1
Summary statistics (means and standard errors) for gaze periods classified as fixations, smooth pursuits, and saccades, averaged across all subjects
performing the example experiment. The mean velocity of saccades and peak velocities of fixations and smooth pursuits are not shown, as these are
irrelevant to their characterization and tend to be misleading.

Fixation Smooth Pursuit Saccade

Mean Velocity (deg/s) 10.1 ± 0.5 SE 16.6 ± 0.7 SE —
Peak Velocity (deg/s) — — 210.0 ± 3.6 SE
Mean Amplitude (deg) 0.390 ± 0.009 SE 2.5 ± 0.07 SE 5.7 ± 0.1 SE
Rate (/s) 2.6 ± 0.07 SE 1.4 ± 0.05 SE 2.4 ± 0.07 SE
Duration (s) 0.35 ± 0.08 SE 0.32 ± 0.01 SE 0.04 ± 0.0006 SE
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timekeeping and communication among experimental devices, and the
offline analysis scripts enable precise time-alignment of data files and
reconstruction of gaze targets.

4.2. Unique features of USE

Other active experimental design suites have been published
(Brookes et al., 2018; Doucet et al., 2016; Jangraw et al., 2014), as well
as suites that leverage active tasks for artificial learning agents (Beattie
et al., 2016; Leibo et al., 2018). These offer their own advantages, and
we recommend that any researchers interested in active tasks review
them carefully. There are, however, several unique features of USE that
may make it particularly attractive for various purposes. These include:

• The State/Level architecture. In our experience, a specialized fra-
mework for the development of flexible experimental hierarchies
greatly speeds up experimental development, and makes the struc-
ture of control more apparent.

• The USE SyncBox. A generic timekeeping and communication de-
vice is a powerful tool for neuroscience research, and enables the
rapid extension of USE to any new experimental hardware without a
corresponding loss of temporal precision or control.

• Physical frame onset detection. USE’s ability to determine precise
frame timing light sensors over the code and signal patch, and to
thereby identify which specific frames were skipped or stuck during
the experiment, enables the perfect reconstruction of the experi-
mental session without relying on the game engine’s estimates of
frame onset times, which do not account for skipped and stuck
frames and, in our experience can sometimes be as much as 20ms
off the actual onset.

• Shotgun raycasts. So far as we are aware, all published work using
eyetracking in 3D scenes either uses simple areas of interest, which
do not change with regard to object shape, or single raycasts, which
do not account for eyetracker imprecision or the spatial extent of the
fovea. Shotgun raycasts, on the other hand, enable precise control
over the degrees of visual angle surrounding gaze points in which
objects are designated as targeted, without assuming anything about
the underlying object shapes.

• Translational capabilities. USE enables the rapid generation and
testing of slightly different versions of the same experiment, suitable
for research using different populations of humans and non-humans,
as well as artificial learning agents of all types.

• Unity online resources. Unity is one of the most popular game en-
gines in the world, and as such has many resources available for
users of all skill levels, including tutorials, help forums, and (paid)

support from Unity employees.

These advantages make USE a powerful tool for active experi-
mentation.

Furthermore, the modular, generic and algorithmic principles un-
derlying USE imply that it is possible for interested researchers to take
any of these features that are currently unique to USE, and incorporate
them into other development protocols. We hope to encourage cross-
fertilization of this kind, where the best development tools and concepts
from different laboratories influence those in others. For example, the
gaze classification algorithm we describe in 3.4.3 was adapted from
that used by Doucet et al.ös (2016) laboratory (Corrigan et al., 2017),
for which we are grateful.

4.3. Possible extensions

USE is robust and full-featured enough to be of use to any re-
searchers interested in active tasks. However, there are many ways in
which its ease-of-use, flexibility, and power could be improved. We are
currently considering several of these, including:

• Creating a generic event-driven data collection system for objects in
the 3D environment that automatically records their location, ro-
tation, scale, and other alterable properties whenever these prop-
erties change. This would be combined with a generic replayer
system that could read in such data files and reconstruct each frame
scene, without the necessity of coding a custom replayer for each
study.

• Specific wrappers for communication with a large variety of ex-
perimental hardware and software (other eyetrackers, response de-
vices, neural acquisition devices, etc).

• Real-time analysis of light sensor data in the USE SyncBox with
enough precision to enable signal output to be time-locked to frame
onsets, thereby enabling real-time feedback-loops such as those used
in Brain-Machine Interface contexts.

• Sub-millisecond access to system-level monitor flip commands, as is
available in static experimental design suites (Brainard, 1997;
Kleiner et al., 2007; Peirce, 2007, 2008; Pelli, 1997), but not in
Unity. This would enable more accurate online estimation of frame
onset times, and thus greatly improve frame-locked temporal syn-
chronization in cases when using light sensors is not feasible, as is
the case for, e.g., most stereoscopic goggles.

• Sub-millisecond access to inputs from serial, UDP, and TCP/IP ports,
which would enable much more precisely-timed communication to/
from external devices, without requiring them to be connected to

Fig. 6. Gaze behavior during example experiment. (A) Saccadic main sequence of six representative participants performing the context-dependent feature learning
task. Saccade rate ranged from ˜2-3.5/s. An inflection point in the main sequence occurs around 10–15 deg. (B) Density of fixations onto a standardized object for one
participant (see methods). Fixation centers were normalized for change in object size with depth and mapped onto a standard object located 4 world units away from
the camera. Details of the normalization process are in Supplemental Materials 3. Color indicates the relative amount of time that participants spent fixating each
point. Participants were most likely to fixate close to object centers.
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the USE SyncBox. (This would still include the unavoidable delays
associated with these ports, but their precision and accuracy would
be much higher than in the current suite.)

USE is under active development, and we intend to update the files
available for download as components are modified or created.

4.4. Concluding remarks

Interest in naturalistic, complex and active tasks is burgeoning, and
will continue to do so. We very much look forward to seeing the effects
that these tasks have on theory and method in the neurosciences,
cognitive sciences, and in artificial intelligence research. We hope that
the set of software and hardware components we have produced will
play a small part in this process by facilitating temporally precise, well-
controlled experiments in more complex and naturalistic settings.
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Glossary

Active task: Experimental tasks which involve some combination of realistic, usually

moving, stimuli, continuous opportunities for action, ecologically valid tasks, com-
plex behaviours, etc. Here, they are contrasted with static tasks (see below)

Arduino: A multi-purpose generic micro-processor, here used to control inter-device
communication and time synchronization.

Raycast: A game-engine method that sends a vector between two points in a virtual three-
dimensional environment, and returns the first object in that environment it hits.
Often used to determine if a character in a game can see or shoot another character.

State Machine (also Finite State Machine): A way of conceptualizing and implementing
control in software, such that at any one moment the software is in one, and only one,
state. In hierarchical state machines, as used in the present software suite, these
can be organized into different levels, such that each level can only be in one state,
but a state can pass control to a lower level.

Static task: Experimental tasks like those traditionally used in the cognitive neu-
rosciences. Simple, usually stationary, stimuli, limited opportunities for action,
simple behaviours, etc. Here, they are contrasted with active tasks (see above).

Unity: One of the most popular video game engines. Freely available.
Video game engine: A software development kit designed to handle many of the common

issues involved in creating video games, such as interfacing with controllers, simu-
lating physical collisions and lighting, etc.
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