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ABSTRACT
BACKGROUND: Donepezil exerts pro-cognitive effects by nonselectively enhancing acetylcholine (ACh) across
multiple brain systems. Two brain systems that mediate pro-cognitive effects of attentional control and cognitive
flexibility are the prefrontal cortex and the anterior striatum, which have different pharmacokinetic sensitivities to ACh
modulation. We speculated that these area-specific ACh profiles lead to distinct optimal dose ranges for donepezil to
enhance the cognitive domains of attention and flexible learning.
METHODS: To test for dose-specific effects of donepezil on different cognitive domains, we devised a multitask
paradigm for nonhuman primates that assessed attention and cognitive flexibility. The nonhuman primates
received either vehicle or variable doses of donepezil before task performance. We measured intracerebral
donepezil and its strength in preventing the breakdown of ACh within the prefrontal cortex and anterior striatum
using solid phase microextraction neurochemistry.
RESULTS: The highest administered donepezil dose improved attention and made the subjects more robust against
distractor interference, but it did not improve flexible learning. In contrast, only a lower dose range of donepezil
improved flexible learning and reduced perseveration, but without distractor-dependent attentional improvement.
Neurochemical measurements confirmed a dose-dependent increase of extracellular donepezil and decreases in
choline within the prefrontal cortex and the striatum.
CONCLUSIONS: The donepezil dose for maximally improving attention differed from the dose range that enhanced
cognitive flexibility despite the availability of the drug in two major brain systems supporting these functions. These
results suggest that in our cohort of adult monkeys, donepezil traded improvements in attention for improvements in
cognitive flexibility at a given dose range.

https://doi.org/10.1016/j.bpsgos.2021.11.012
The acetylcholinesterase (AChE) inhibitor donepezil is one of
few Food and Drug Administration–approved cognitive en-
hancers that aims to address a wide range of cognitive deficits
in subjects with mild cognitive impairment or dementia (1–3).
Basic research suggests that the cognitive domains that can
be enhanced with AChE inhibitors include selective attention,
working memory, response inhibition, learning, and long-term
memory (4–6). Consistent with these reports, clinical studies
assessing donepezil at one or two doses across larger cohorts
of subjects with varying stages of Alzheimer’s disease have
found improvements in compound scores of cognitive testing
batteries (4,7–10). It is, however, not clear whether the stan-
dard doses of donepezil used in clinical studies improve mul-
tiple cognitive domains directly or whether, at a particular
effective dose, its major route of action is to enhance arousal,
which then provides an indirect, overall cognitive advantage for
attention, working memory, learning, and memory processes
(6,11). Assessing whether donepezil affects multiple cognitive
domains simultaneously at a given dose is important for
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evaluating its therapeutic efficiency and to identify cognitive
domains that should be targeted in drug discovery efforts for
improved future cognitive enhancers.

One potential limitation of donepezil and other AChE in-
hibitors is that they increase acetylcholine (ACh) concentra-
tions nonselectively across multiple brain systems. Such a
nonselective ACh increase has shortcomings when brain
systems are differently sensitive to ACh action; the donepezil
dose that optimally affects one brain system might over- or
understimulate another brain system. In primates, muscarinic
ACh subreceptors relevant for attention and memory functions
(12–15) have enhanced densities in the prefrontal cortex (PFC)
(16), suggesting that the PFC may be more sensitive to
modulation by AChE inhibitors than posterior brain areas.
Moreover, a comparison of transcription factor (CREB [cAMP-
response element binding protein]) activation of the PFC and
the striatum to muscarinic modulation by xanomeline has re-
ported a 10-fold higher receptor sensitivity of the striatum (17),
consistent with other studies reporting significantly higher
ociety of Biological Psychiatry. This is an open access article under the
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muscarinic binding potential and higher AChE activity in the
striatum than in other cortical regions (18). It is unclear how
these differences affect ACh modulation of attention functions
that depend on the PFC (19) and of flexible learning functions
that are dependent on the striatum (20,21). One consequence
of the brain area–specific sensitivity to ACh levels could be that
a best dose for enhancing cognitive functions supported by
the striatum might not sufficiently stimulate the PFC, and that a
best dose for enhancing PFC functions might overstimulate
the striatum.

To test for these possible implications of brain region–
specific ACh action, we devised a drug testing paradigm for
monkeys that assessed the effects of three different doses of
donepezil across different domains of arousal, attention, and
cognitive flexibility in a single testing session. We evaluated the
attention domain with a visual search (VS) task that varied the
number and perceptual similarity of distracting objects and
quantified the domain of cognitive flexibility with a learning task
asking monkeys to flexibly adapt to new feature-reward rules
and avoid perseverative responding. This assessment para-
digm goes beyond existing nonhuman primate studies of
donepezil that so far have found enhanced short-term memory
using delayed match-to-sample tasks (4,6,10,15,22–27),
enhanced arousal and nonselective speed of processing
(15,27), or no consistent effect (18) (surveyed in Table S1) and
takes into account that studies in rodents report positive
donepezil effects across a wider range of domains, including
reversal learning (28), paired associate learning (29), object
discrimination (30), and novelty detection (31), and variable
results on serial choice tasks indexing attention functions (32)
(surveyed in Table S2). With our design, we found that done-
pezil improves interference control over distractors at doses
that caused an overall slower response (i.e., reduced speed of
processing) and peripheral side effects. In contrast, a lower
dose of donepezil caused no clear attentional effect but
improved cognitive flexibility. These findings document
domain-specific dose-response effects of donepezil for
attention and cognitive flexibility.

METHODS AND MATERIALS

Nonhuman Primate Testing Protocol

Three adult male rhesus macaques were separately given
access to a cage-mounted Kiosk Station that provided a
touchscreen interface inside the animal’s housing unit to
perform cognitive tasks (Figure 1A) (28) (see the Supplement).
The behavioral tasks were controlled by the Unified Suite for
Experiments (33).

Drugs and Procedures

We used donepezil (Sigma-Aldrich, catalog number D6821) in
three doses, 0.06, 0.1, and 0.3 mg/kg, to operate within the
dosing range of previous studies reporting pro-cognitive
effects (surveyed in Tables S1 and S2). At this intramuscular
(IM) range, plasma concentrations of donepezil are roughly the
same when dosing with w10x the concentration orally (15).
Animals received saline as vehicle control or a dose of done-
pezil IM injection 30 minutes before starting task performance,
taking into account its expected 1-hour half-life (34).
Biological Psychiatry: Glob
Administration was double blinded. Drug side effects were
assessed 15 minutes after drug administration and after
completion of the behavioral performance with a modified Irwin
Scale (35–38) for rating autonomic nervous system (e.g., sali-
vation) and somatomotor system functioning (e.g., posture,
unrest). Monkey behavioral status was video-monitored
throughout task performance (Figure 1A).

Behavioral Paradigms

In each experimental session, the monkeys performed a VS
task to measure attentional performance metrics and a feature-
reward learning (FL) task to measure cognitive flexibility met-
rics (39). Each performance day was made up of an initial set of
100 trials of VS, a set of 21 learning blocks with 35 to 60 trials
each of the FL task, and a second set of 100 trials of the VS
task (Figure 1Aii). Details of both tasks are provided in the
Supplement. The VS task required the monkeys to find and
touch a target object among 3, 6, 9, or 12 distracting objects to
receive fluid reward (Figure 1B). The target was an object
shown in 10 initial trials without distractors. Targets and dis-
tractors were multidimensional, 3D-rendered quaddle objects
(33) that shared few or many features of different feature di-
mensions (colors, shapes, arms, body patterns), which
rendered the search easier when there were no or few simi-
larities among the features of targets and distractors or more
difficult if the target-distractor (T-D) similarity was high
(Figure 2A). The FL task required the monkeys to learn through
trial and error which object feature was rewarded in blocks
of w35 to 60 trials (Figure 1C). The rewarded feature changed
uncued and switched to a new feature of the same or different
feature dimensions, which made the task similar to conceptual
set-shifting tasks [e.g., (40,41)] but different by using a larger
set of features that varied within and across sessions to vary
task difficulty. In each trial, three objects were shown; they
varied either in the features of one feature dimension (e.g.,
having different colors or body shapes) or in the features of two
feature dimensions (e.g., having different colors and body
shapes). Choosing the object with the correct feature was
rewarded with a probability of 0.8. Blocks in which only one
feature dimension varied (1D blocks) were easier because
there was lower attentional load than in blocks with two varying
feature dimensions (2D blocks).

Neurochemical Confirmation of Drug Effect

To evaluate the levels of donepezil in brain structures that are
necessary for successful attention and learning performance,
we measured the ACh metabolite choline and donepezil con-
centrations in the PFC and the anterior striatum (caudate nu-
cleus) 15 minutes after administering low and high doses of
donepezil (0.06 and 0.3 mg/kg, respectively, IM) in separate
experiments. Measures of donepezil were made when we
observed dose-limiting side effects at the 0.3-mg/kg dose, and
the two tested doses were accompanied by pro-cognitive ef-
fects in our task (see results). We used microprobes that
sampled the local neurochemical milieu with the principles of
solid phase microextraction (SPME) (42) followed by quantifi-
cation of the concentrations with liquid chromatography and
mass spectrometry (42). The detailed procedures used are
described in (43) and in the Supplement.
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Figure 1. Task design, metastructure, and VS
performance as a function of distractor number. (A)
(i) Picture of one of the subjects working in the
custom-built kiosk, interacting with the touchscreen
and receiving fluid reward. (ii) The metastructure of
the multitask. Each experimental session consists of
three superblocks of VS, FL, and VS, in turn. Each
VS block is preceded by 10 familiarization trials,
which are identical to a VS trial but without any
distractors. Each VS block contains trials with 3, 6,
9, or 12 distractors randomly selected and coun-
terbalanced over the block. In contrast, each FL
block contains 0 or 1 irrelevant feature dimensions in
addition to the relevant feature dimension (the
dimension with the rewarded feature value) coun-
terbalanced over the session. (B) (i) From the grand
pool of quaddles, which includes four feature di-
mensions and a variable number of feature values (9
shapes, 9 patterns, 8 colors, and 11 arms), three
feature values from three feature dimensions
are chosen. This 3 3 3 pool is then counterbalanced
for dimension presentation and feature-reward as-
sociation and is used for 2 weeks of data collection
where all presented quaddles are selected from this
3 3 3 pool. (ii) Example trials. Two example VS trials
(top) within the same block with 3 distractors (left)
and 9 distractors (right). Each VS block will contain
one of five backgrounds, with the VS blocks in the
same day never having the same background. All
distractors and target objects in VS blocks are three-

dimensional objects, and distractors may be duplicated in each trial. Quaddles are spatially randomly presented at the intersections of a 5 3 4 virtual grid
pattern on screen. The red box highlights the rewarded target object, which is invariable within the VS block, in these examples. Two example FL trials (bottom)
within the same block containing 2D quaddles (1 distracting dimension plus the relevant dimension). The rewarded feature value in this block is the checkered
pattern independent of what color feature value it is paired with. Quaddles may be presented in eight possible locations in a circle, each being 17� of visual
radius away from the center of the screen. The red box signifies the rewarded target object, which is a variable combination of the rewarded feature value (the
checkered pattern in this example) with a random feature value of the distractor dimension (color in this example). (C) The trial structure for both the FL (top)
and VS (bottom) blocks of the task are very similar. A trial is initiated by a 0.3 to 0.5 s touch and hold of a blue square (3� visual radius wide), after which the blue
square disappears for 0.3 to 0.5 s before task objects, which are 2.5� visual radius wide, are presented on screen. Once the task objects are on screen, the
subject is given 5 s to visually explore and select an object via a 0.2 s touch and hold. A failure to make a choice within the allotted 5 s results in an aborted trial
and does not count toward the trial count. Brief auditory feedback and visual feedback (a halo around the selected object) are provided on object selection,
with any earned fluid reward being provided 0.2 s after object selection and lasting 0.5 s along with the visual feedback. Nonrewarded trials had a different
auditory tone and a light blue halo around the selected, nonrewarded object. Rewarded objects had a higher pitch auditory tone, a light yellow halo around the
selected rewarded object, and an accompanying fluid (water) reward. (D) Average VS performance by distractor number for the vehicle and all donepezil doses
combined, both separated by the first vs. second VS block. VS performance was significantly different for block number (F1,1722 = 22.19, p , .001) and
condition (F1,1722 = 19.0, p , .001). The inlay shows individual monkey average VS performance linear fits. (E) Average VS performance by distractor number
between vehicle and 0.06, 0.1, and 0.3 mg/kg donepezil doses for the first VS block (F3,896 = 10.77, p , .001). Both the 0.06- and 0.3-mg/kg doses were
significantly different from vehicle (Tukey’s, p = .005 and p, .001, respectively). Error bars here reflect standard deviation in this panel. (F) The set size effect of
VS performance by distractor number for each condition. The 0.3-mg/kg dose set size effect was significantly shallower than the vehicle set size effect (H3 =
11.46, p = .010; Tukey’s, p = .013). FL, feature-reward learning; n.s., not significant; Num, number; Perf, performance; Prop, proportion; VS, visual search.
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Statistical Analysis

Data were analyzed with standard nonparametric and para-
metric tests as described in the Supplement.

RESULTS

Each monkey was assessed in 38 sessions in total, including
17 vehicle days and 7 days with each dose (0.06, 0.1, and 0.3
mg/kg). Drug side effects were noted after IM injections of the
0.3-mg/kg dose in the first 30 minutes after injection as
changes in posture, sedation, vasoconstriction, and paleness
of skin, but no adverse effects persisted beyond 30 minutes
(Table S3). First, we confirmed that the monkeys performed the
VS task with a high 84.4% (60.54%) accuracy (monkeys Ig:
85.2% 6 0.81%; Wo: 88.3% 6 0.94%; Si: 79.8% 6 0.97%)
and showed the expected set size effect evident in decreased
accuracy and slower reaction times with increasing numbers of
70 Biological Psychiatry: Global Open Science January 2023; 3:68–77
distractors (Figure 1D and Figures S1 and S2). When the tar-
gets were more similar to distractors (high T-D similarity), VS
performance decreased from 92.9% (60.4%) to 85.5%
(60.3%) and 81.6% (61.0%) for low, medium, and high T-D
similarity, respectively (H[2] = 169.48, p , .001) (Figure 2B). In
the feature-reward learning task, the monkeys reached the
learning criterion faster in the easier 1D (low distractor load)
condition (average trials to $80% criterion: 12.5 6 0.2 SE)
than in the 2D (high distractor load) condition (average trials to
$80% criterion: 15.6 6 0.2) (Figure 3A and Supplement).

Dose-Dependent Improvement of VS Accuracy and
Slowing of Choice Reaction Times

Donepezil significantly improved the accuracy of the VS task
(F1,1722 = 18.95, p , .001) (Figure 1D) but on average slowed
search reaction times (F1,1722 = 4.83, p = .028) (Figure S1B).
www.sobp.org/GOS
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The slower choice reaction times were evident already for the
single target object in the 10 target familiarization trials
(Figure S1A). These main behavioral drug effects were evident
prominently in the first VS block (Figure 1D and Figure S1A).
We therefore focused our further analysis on the first search
block.

The improved accuracy of VS was dose dependent (F3,896 =
10.77, p , .001). The 0.06-mg/kg dose enhanced performance
by 2.5% 6 1.0%, 4.4% 6 1.3%, 6.1% 6 1.4%, and 6.3% 6
1.6% (mean 6 SD) for 3, 6, 9, and 12 distractor trials,
respectively (Tukey’s, p = .005). The 0.3-mg/kg dose enhanced
performance by 2.7% 6 1.0%, 6.3% 6 1.2%, 8.5% 6 1.3%,
and 11.0% 6 1.4% (mean 6 SD) for 3, 6, 9, and 12 distractor
trials, respectively (Tukey’s, p , .001) (Figure 1E). Thus, we
found larger improvement when more distractors interfered
with the target search. We confirmed this by fitting a regression
line across performance at different numbers of distractors,
which revealed overall, significantly shallower slopes with
donepezil (slopes: 20.013 6 0.001, 20.009 6 0.002, 20.015
6 0.003, and 20.005 6 0.002 for vehicle, 0.06, 0.1, and 0.3
mg/kg of donepezil, respectively [H3 = 11.46, p = .01]). Pairwise
comparison showed that the 0.3-mg/kg drug dose and the
vehicle condition showed significantly different slopes
(Tukey’s, p = .013) (Figure 1F).

In contrast to improving VS accuracy, donepezil slowed
down reaction times across all distractor conditions at the 0.3-
mg/kg dose relative to vehicle by on average 100 6 40 ms,
238 6 79 ms, 208 6 99 ms, and 264 6 102 ms (mean 6 SD)
for 3, 6, 9, and 12 distractors, respectively (F3,896 = 15.15, p ,

.001; Tukey’s, p , .001) (Figure S1C). The slope of the
regression over different numbers of distractors did not differ
between the 0.3-mg/kg dose and vehicle, which showed that
reaction time effect was a nonselective effect that was inde-
pendent of distractors (regression slope on reaction times:
0.061 6 0.002, 0.065 6 0.007, 0.067 6 0.007, and 0.076 6
0.009 [H(3) = 3.37, not significant (n.s.)] for vehicle, 0.06, 0.1,
and 0.3 mg/kg of donepezil, respectively) (Figure S1D).

Across sessions, VS accuracy was correlated with reaction
times only for the vehicle (Pearson, r:20.30, p, .001) and 0.1-
mg/kg donepezil dose condition (Pearson, r: 20.46, p = .034)
but not for the 0.06- and 0.3-mg/kg dose conditions in which
monkeys showed improved accuracy, which suggests that the
accuracy improvement is independent from a slowing of reac-
tion speed (Figure S2A, B).

We next tested whether improved interference control over
increasing number of distractor objects was likewise evident
when increasing the similarity of distractor and target features
(Figure 2A). First, we confirmed that higher T-D similarity
overall reduced performance (F2,672 = 16.17, p , .001)
(Supplement). Donepezil significantly counteracted this simi-
larity effect and improved performance at the 0.06- and 0.3-
mg/kg doses (F3,672 = 7.75, p , .001; Tukey’s, p = .034 and p
, .001, respectively). This finding shows that the beneficial
effect of donepezil significantly increased when there was
higher demand to control perceptual interference from dis-
tracting objects (Figure 2B). This was also evident as a sta-
tistical trend of a shallower regression slope at 0.06- and 0.3-
mg/kg doses of donepezil, which indicates less interference
from distracting features when they were similar to the target
(Figure 2C) (H3 = 2.79, n.s.; slope changes relative to vehicle
Biological Psychiatry: Glob
for 0.06-, 0.1-, and 0.3-mg/kg doses were 0.0357 6
0.0236, 20.0289 6 0.0334, and 20.0656 6 0.0197, respec-
tively). The improved search performance with donepezil for VS
with higher T-D similarity and with a higher number of dis-
tractors was evident in significant main effects, but there was
no interaction, suggesting that they improved performance
independent of each other (F2,2615 = 64.59, p , .001; F3,2615 =
28.85, p , .001; and F6,2615 = 0.69, n.s., respectively)
(Figure 2D). This independence was also suggested by the
absence of a correlation of the T-D similarity effect and the
number-of-distractor effect (Pearson, n.s.) (Figure S3).
Dose-Dependent Improvement of Flexible Learning
Performance

Donepezil also improved feature-reward learning performance
but only at the 0.06-mg/kg dose (Figure 3B), and it was most
pronounced for the first third of the behavioral session (F3,602 =
3.3, p = .020) (Figure 3C). We therefore focused further analysis
on the first third of the learning blocks, which revealed that the
learning improvement at the 0.06-mg/kg dose was significant
for the low distractor load condition (significant interaction
effect of drug condition and distractor load [condition 3 dis-
tractor load]: F3,1052 = 3.59, p = .013); for vehicle, 0.06-, 0.1-,
and 0.3-mg/kg donepezil doses, the number of trials to crite-
rion were 11.3 6 0.4, 7.7 6 0.9, 12.3 6 1.3, and 11.0 6 1.2,
respectively, with the 0.06-mg/kg dose and the vehicle being
significantly different (p = .020, Bonferroni correction)
(Figure 3D). There was no change in the learning speed with
other doses at low or high distractor load.

Beyond learning speed, we found overall slower choice
reaction times at the 0.3 mg/kg donepezil dose (Figure 3E)
(main effect of drug condition: F3,1052 = 12.29, p , .001). While
reaction times were overall slower at the high distractor load
(F1,1052 = 7.18, p = .008), there was no interaction with drug
dose (F3,1052 = 0.26, n.s.). After visually inspecting the results,
we separately tested the 0.3-mg/kg dose of donepezil and
found that it led to significantly slower choice reaction time
than the vehicle (Tukey’s, p , .001) (Figure 3E). The changes in
choice reaction times did not correlate with changes in learning
performance (number of trials to criterion) at any drug condi-
tion, indicating that they were independently modulated
(Pearson, all n.s.) (Figure S2D).

We predicted that the faster learning at the 0.06 mg/kg
donepezil dose could be due to a more efficient exploration of
objects during learning, which would be reflected in reduced
perseverative choices of unrewarded objects. Overall,
perseverative errors (defined as consecutive unrewarded
choices of objects with the same feature dimension) made up
20% of all errors. As expected, we found significantly shorter
sequences of perseveration of choosing objects within dis-
tractor feature dimensions at the 0.06-mg/kg dose of done-
pezil (Figure 3F). For vehicle, 0.06-, 0.1-, and 0.3-mg/kg doses,
the average length of perseverations in the distractor dimen-
sion was 2.1 6 0.1, 1.8 6 0, 1.9 6 0.1, and 1.9 6 0.1 trials,
with the difference between the vehicle and the 0.06 dose
being significant (p = .021). Perseverative choices in the target
feature dimension were not different between conditions (for
0.06-, 0.1-, and 0.3-mg/kg donepezil doses, the average
al Open Science January 2023; 3:68–77 www.sobp.org/GOS 71
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Figure 2. VS task performance and change in
difficulty through increasing distractor numbers and
T-D similarity. (A) A visual description of the T-D
similarity measure in the VS task. For an example
target in the red square, three example distractors
are presented with 0, 1, and 2 features in common,
respectively, from left to right. The cartoon plot
below shows the impact of the average T-D simi-
larity of an individual trial on performance. (B) Similar
to Figure 1D, but here we plot average VS perfor-
mance by T-D similarity. There was a significant ef-
fect of T-D similarity on performance (F2,627 = 16.17,
p , .001) and condition, with both the 0.06 and 0.3
mg/kg donepezil doses being significantly different
from vehicle (F3,267 = 7.75, p , .001; Tukey’s p =
.034 and p , .001, respectively). (C) The change in
the slope of VS performance with 0.06, 0.1, and 0.3
mg/kg donepezil relative to vehicle. The change in
slope by distractor number is plotted on the left y-
axis (same data as Figure 1F) (H3 = 11.46, p = .010)
while the change in slope by T-D similarity is plotted
on the right y-axis (H3 = 2.8, n.s.). (D) A visualization

of the combined effect of distractor number and T-D similarity on performance. From left to right, each cluster of lines represents increasing distractor numbers
while data within each line represents low, medium, and high T-D similarity from left to right. Both distractor number (F3,2615 = 28.85, p , .001) and T-D
similarity (F2,2615 = 64.59, p, .001) impact VS performance with no significant interaction (F6,2615 = 0.69, n.s.). dist, distractor; Feat, feature; n.s., not significant;
Num, number; Perf, performance; Prop, proportion; sim, similarity; T-D, target-distractor; VS, visual search.
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perseveration length in the target dimension was 1.7 6 0, 1.7
6 0, 1.6 6 0, and 1.7 6 0 trials [n.s.]).

Dissociation of Attention and Learning
Improvements, but Slowing Is Correlated

Theeffectsofdonepezil on feature-reward learningandVSmight
berelated,butwe foundthat learningspeedandsearchaccuracy
were not correlated at the doses at which the drug improved
learning and search (0.06-mg/kg dose) or improvedonly VS (0.3-
mg/kg dose) (Pearson, all n.s.). A significant correlation was
found only for the 0.1-mg/kg dose (Pearson, r:20.54; p = .012)
(Figure4A). Learningat loworhighdistractor loadandthesetsize
(slope) effects in theVS taskwereuncorrelated (Pearson, all n.s.).
However, at the 0.3-mg/kg donepezil dose, the T-D similarity
effect (i.e., the search-slope change) in the VS task positively
correlatedwith thedifferenceof learningspeedathighversus low
distractor load in the learning task (Pearson, r: 0.60; p = .008).
This effect signifies that better attentional search of a target
among similar distractors is associated with poorer flexible
learningof new targetswhen there aremultiple object features to
search through (high distractor load).

In contrast to accuracy, choice reaction times in the learning
task and VS were significantly correlated for the 0.1-mg/kg
donepezil dose (Pearson, r: 0.52; p = .016), the 0.3-mg/kg
dose (Pearson, r: 0.66; p = .002), and the vehicle control
condition (Pearson, r: 0.60; p , .001) (Figure 4B).

Determination of Extracellular Donepezil and
Choline Levels in the PFC and Anterior Striatum

VS and flexible learning are realized by partly independent brain
systems, including the PFC and anterior striatum (44). To
determine whether extracellular levels of donepezil were
increased to a similar magnitude in the PFC and anterior stria-
tum,wemeasured its concentration after administering doses of
either 0.06 or 0.3mg/kg donepezil IM in the PFC, assumed to be
necessary for efficient interference control during VS (19), and in
72 Biological Psychiatry: Global Open Science January 2023; 3:68–77
the head of the caudate nucleus, which is necessary for flexible
learning of object values (20,21). We used a recently developed
microprobe that samples chemicals in the neural tissue based
on the principles of SPME (42,43). We found that donepezil was
available in both brain areas, and its extracellular concentration
more than doubled after injecting 0.3mg/kg comparedwith 0.06
mg/kg in both areas (F1,16 = 9.69, p = .007), with no significant
difference between PFC and caudate (F1,16 = 1.44, n.s.)
(Figure 5A). Donepezil should cause a depletion of the ACh
metabolite choline (45). Using high-performance liquid
chromatography–mass spectrometry analysis of the SPME
samples, we found that 0.06 and 0.3 mg/kg donepezil reduced
choline concentrations by 74.2%6 14.9% (p = .005) and 85.7%
6 26.9% (p = .007) of their baseline concentrations in the PFC
and, by 68.4%6 13.8% (p= .022) and 81.0%6 12.9% (p= .009)
of respective baseline concentrations in the caudate (Figure 5B).
The 11.5% and 12.6% stronger reduction of choline at the 0.3-
versus 0.06-mg/kg dose in the PFC or caudate was not signifi-
cant (n.s.).

To obtain an independent physiological marker of dose-
dependent effects, we quantified how, during actual task
performance, donepezil changed the heart rate before versus
after drug administration (Supplement). The heart rate showed
a transient peak w20 minutes after the donepezil injection
relative to baseline, which was significant for the 0.3-mg/kg
dose (preinjection 102.3 6 7.1 to postinjection 121.6 6 2.6;
p = .021) but not for the 0.06-mg/kg dose (preinjection: 90.3 6
4.2 to postinjection: 94.8 6 5.4; n.s.). The 0.3-mg/kg
dose caused a significantly higher heart rate peak than the
0.06-mg/kg dose (p = .006) (Figure 5C).

DISCUSSION

Here, we dissociated donepezil’s improvement of attentional
control of interference during VS from improvements of
cognitive flexibility during FL. At the highest dose tested,
donepezil reduced interference during VS, particularly when
www.sobp.org/GOS
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Figure 3. Feature-reward learning task learning
curves and performance. (A) Average learning curves
of each monkey and all monkeys combined for both
low and high distractor load conditions. In all in-
stances, monkeys learned faster and with higher
plateau performance in low distractor load blocks
relative to high distractor load blocks. (B) All-monkey
average learning curves for vehicle, 0.06-, 0.1-, and
0.3-mg/kg donepezil doses for both low and high
distractor load conditions. (C) Temporal progression
of learning speed (LP) for vehicle, 0.06-, 0.1-, and 0.3-
mg/kg donepezil doses for the low distractor load
condition only. At the 0.06-mg/kg dose, donepezil al-
lows for faster learning in the low attentional load
blocks (F3,602 = 3.3, p = .020). Similar to the visual
search task, donepezil’s enhancement is only visible
early on and relatively close to its intramuscular
administration. (D) Average learning speed of vehicle
and donepezil doses for low and high distractor load
blocksacrosssessionsrevealsan interactionbetween
drug condition and distractor load (F3,1052 = 3.59,
p= .013). (E)Sameas (D)but for choiceRTs insteadof
learning speed. The 0.3-mg/kg donepezil dose slows
choiceRTs inboth lowandhigh distractor load blocks
(condition F3,1052 = 12.3, p, .001; Tukey’s, p, .001).
(F) Change in the length of perseverative errors from
vehicle, where feature values in the distracting
dimensionwere the target of the perseverations. Error
bars reflectSEMfor intermonkeyvariability.Donepezil
at the 0.06-mg/kg dose significantly reduces persev-
eration length in the distracting dimension (p = .021);
other donepezil doses trends toward this aswell. avg,
average; LP, learning point; persv, perseverative;
Prop, proportion; RT, reaction time.
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there were many distractors and a high similarity of distractors
with the target, while concomitantly slowing down overall re-
action times and inducing temporary peripheral side effects. In
contrast, the lowest dose of donepezil did not affect target
detection times during VS but improved adapting to new
feature-reward rules and reduced perseverative responding.
These findings document a dose-dependent dissociation of
the best dose of donepezil for improving attention and
cognitive flexibility.
Different Donepezil Dose Ranges for Improving
Interference Control and Flexible Learning

Using a behavioral assessment paradigm with two tasks
allowed us to discern the differences between the donepezil
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dose that maximally improved interference control (in the VS
task) versus the dose that maximally improved flexible learning
(in the reward learning task). In both tasks, donepezil modu-
lated performance early within the session (first of two VS
blocks and the first third of the learning blocks) consistent with
its short half-life and rapid time to peak concentration with IM
delivery (15,34). Our results focused therefore on these early
time windows. We do not expect different conclusions if we
had altered the task sequence (see Supplemental Discussion).
At the 0.06-mg/kg dose, donepezil facilitated flexible learning
of a new feature-reward rule and reduced the length of
perseverative errors (Figure 3C, F). These behavioral effects
are indicators of improved cognitive flexibility across reward
learning and set-shifting tasks (46–48). At the same 0.06-mg/
kg dose, VS response times were unaffected (Figure S1) and
0.1 0.3
 (mg/kg)

p=.002
p=.016*

*

Figure 4. The relationship between the VS task
and the FL task. (A) Correlation coefficients between
FL learning speed and VS performance for vehicle,
0.06-, 0.1-, and 0.3-mg/kg donepezil doses. Only the
0.1-mg/kg donepezil dose had a significant correla-
tion between FL and VS task performance (Pearson,
r: 20.54; p = .012). No doses showed a significant
change in correlation from vehicle. (B) Sameas (A)but
for FL choice RTs and VS search reaction times.
Although vehicle, 0.1, and 0.3mg/kg donepezil doses
had a significant correlation between choice and
search reaction times,we found no significant change
in correlation relative to vehicle. Corr, correlation; FL,
feature-reward learning; n.s., not significant; RT, re-
action time; VS, visual search.
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Figure 5. In vivo extracellular measurements of choline and donepezil, as
well as donepezil’s effect on heart rate. (A) Quantified concentration of
extracellular unbound donepezil with 0.06- and 0.3-mg/kg donepezil
administration in the PFC and CD. We were able to reliably detect higher
donepezil concentrations with 0.3 mg/kg dosing relative to 0.06 mg/kg
dosing (condition F1,16 = 9.69, p = .007) with solid phase microextraction.
We also saw a trend toward higher detectable donepezil in the CD relative to
the PFC at the 0.3-mg/kg dose tested; however, we found neither significant
group nor interaction effects. (B) We used choline concentrations as a
metric for donepezil bioactivity because it deactivates acetylcholinesterase
and prevents acetylcholine’s degradation into choline. We extracted
average sessionwise change in choline from baseline with 0.06 and 0.3 mg/
kg donepezil doses within the PFC and CD. Although we found significant
decreases in choline by up to .80% of baseline concentrations, we found
no significant effect of dosing in either the PFC or CD. (C) The HR of our
fourth monkey was monitored during the neurochemical experiments. This
revealed a sharp and transient increase in HR after administration of
donepezil at the 0.3-mg/kg dose (Supplement), which led to a higher
average beats per minute (bpm). We found that we can significantly distin-
guish 0.06 and 0.3 donepezil administration via HR (p = .006). CD, caudate;
HR, heart rate; n.s., not significant; PFC, prefrontal cortex.
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VS accuracy was overall improved but independent of the
number of distractors, i.e., independent of the degree of
interference (Figure 1E, F). In contrast, at the higher donepezil
doses, flexible learning behavior was indistinguishable from
the no-drug vehicle control condition, showing that improving
flexibility required donepezil at a lower dose.

This conclusion is opposite to that of the drug effects on VS
performance, which was maximally improved at the 0.3-mg/kg
dose. At this dose, subjects not only showed improved resis-
tance to interference when there were more distracting objects
(Figure 1E, F) but also improved resistance to distracting ob-
jects that were visually similar to the searched-for target
(Figure 2B–D). These findings document that donepezil en-
hances robustness to distraction (49,50), which critically ex-
tends insights from existing primate studies with donepezil that
mostly used simpler tasks to infer pro-cognitive effects on
working memory or arousal (Table S1). The process of atten-
tional control of interference also goes beyond a short-term
memory effect measured with delayed match-to-sample
tasks. In the VS paradigm we used, short-term memory of
the target object is already necessary for performing the easier
trials with 3 or 6 distractors, while an attention-specific effect
can be inferred when there is greater improvement in perfor-
mance with increased attentional demands in trials with 9 or 12
distractors. Thus, our study provides strong evidence that
donepezil causes specific attentional improvement at higher
doses, which supports the neurogenetic model of cholinergic
modulation of attention (51) that recently has received func-
tional support in studies reporting enhanced distractor sup-
pression in nonhuman primates with nicotine receptor–specific
ACh modulation (52–54) and improved suppression of
perceptually distracting flankers in human subjects tested with
a single dose (55). We should note, however, that at the high
dose, donepezil already caused a nonselective slowing of re-
action times indicative of peripheral side effects (see
Supplemental Discussion).

The finding that different dose ranges improved flexible
learning and VS distractor filtering suggests that these pro-
cesses have partially independent Yerkes-Dodson style
inverted-U dose-response curves (Figure 6). One reason sup-
porting this suggestion is that flexible learning and distractor
filtering are supported by partially different brain networks,
which likely have differential sensitivity to cholinergic modu-
lation. Lesion studies in nonhuman primates have shown that
flexible reward learning is closely associated with the medial
and orbitofrontal PFC and the striatum where lesions impair
learning visual reward associations (46,56). In contrast, VS
distractor filtering in primates depends on the dorsolateral PFC
(dlPFC) and its connections with posterior parietal cortices,
with bilateral dlPFC lesions impairing filtering distraction (57).
Brain areas within these partly segregated networks for
learning and distractor filtering might be differently sensitive to
cholinergic modulation. For example, primate dlPFC has been
documented to be uniquely sensitive to neuromodulation by
catecholamines and ACh for spatial working memory and
switching between distracting features (5,58), with ACh
depletion in PFC causing deficits in attention but not learning
www.sobp.org/GOS
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(59). During cognitive processes, ACh modulates synaptic ef-
ficacy postsynaptically in an inverted-U manner through both
alpha 7 nicotinic receptors (60) and M1 muscarinic receptors
(61). Such inverted-U curves for different receptors are not
likely to be homogenous or fully overlapping when taking into
consideration variable task demands within a cognitive domain
or when considering different cognitive domains entirely (62).
This is supported by studies showing disruption of rule-
selective activity with iontophoretic M1 overstimulation of
dlPFC neurons (63), while at lower doses, delay-cell firing and
spatial tuning were enhanced (61). Our results may thus reflect
different inverted-U curves along a construct of flexible
attention shifting, required for optimal performance in our
feature-reward learning task, and stable filtering of distractors
required for optimal performance in our VS task (Figure 6).

Quantifying Extracellular Levels of Donepezil and
Choline in PFC and Striatum

We confirmed the presence of extracellular donepezil in the
PFC and anterior striatum at the doses tested (Figure 5A) and
that it prevented ACh metabolism as evident in 68% to 86%
reduced choline levels (Figure 5B). To our knowledge, this is
the first quantification of donepezil action on the breakdown of
ACh in two major brain regions in the primate. The observed
reduction of choline is higher than reductions of AChE activity
(of w25%–70%) reported with positron emission tomography
or in brain homogenate (64,65). Previous studies suggest that
evaluating blood plasma levels or cerebrospinal concentra-
tions may not predict how effectively AChE drugs influence
behavioral outcomes (66). One likely reason is that intracere-
bral concentrations can be multifold higher than extracerebral
concentration levels (64,67) and do not reflect the actual
bioactive concentration available in target neural circuits. By
confirming that donepezil prevented ACh breakdown in the
PFC and striatum, we thus established a direct link between
behavioral outcomes and local drug bioavailability in two brain
structures that causally contributes to attention and learning
(see above) (46,56,57,59,68). While our study showed that
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donepezil has a similar effect on ACh breakdown in both areas,
it leaves unanswered whether or how choline concentrations in
either brain area relate to finer performance variations across
tasks because we measured choline only during one task and
with insufficient statistical power to establish such a link at this
stage.

The neurochemical measurements of donepezil in the PFC
and striatum were achieved with a recently developed micro-
probe that samples neurochemicals through principles of
SPME (42,43,69–71) and so far was used for testing the
consequence of drugs only in rodents (70,72,73). We believe
that leveraging this technique in primate drug studies will be
important for clarifying whether systemically administered
drugs reach the desired target brain systems in which they are
supposed to exert their pro-cognitive effects.

In our study, confirming donepezil action in the PFC and
striatum critically constrains the interpretation of the behavioral
results, suggesting that different behavioral outcome profiles
are not due an uneven drug availability. Rather, the different
best doses for VS and flexible learning performance will likely
be due to brain area–specific pharmacokinetic profiles of re-
ceptor densities, drug clearance profiles, or autoreceptor
mechanisms that intrinsically downregulate local drug actions
(74–76). One prediction from the specific distribution and ki-
netics of nicotinic or muscarinic receptors in the PFC and
striatum is that donepezil might, at lower doses, act predom-
inantly in the striatum via activation of muscarinic subreceptors
because they have a particularly high binding potential (18) and
respond stronger to muscarinic ACh receptor activation
compared with the PFC (17) (see Supplemental Discussion).
However, it is also possible that donepezil recruits nicotinic
receptors, which are upregulated with chronic donepezil use
(77). It is important to disentangle, in future studies, the role of
nicotinic and muscarinic subreceptors in the PFC and striatum
to optimize the clinical potential to improve learning and
attention functions in conditions with cognitive impairment and
particularly in dementia (see Supplemental Discussion).

In summary, our results provide rare quantitative evidence
that a prominent Ach-enhancing drug exerts domain-specific
cognitive improvements of attentional control and cognitive
flexibility at a distinct dose range. A major implication of this
finding is that for understanding the strength and limitations of
pro-cognitive drug compounds, it will be essential to test their
dose-response efficacy at multiple cognitive domains.
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