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Abstract

■ Flexible learning of changing reward contingencies can be
realized with different strategies. A fast learning strategy involves
using working memory of recently rewarded objects to guide
choices. A slower learning strategy uses prediction errors to grad-
ually update value expectations to improve choices. How the fast
and slow strategies work together in scenarios with real-world
stimulus complexity is not well known. Here, we aim to disentan-
gle their relative contributions in rhesus monkeys while they
learned the relevance of object features at variable attentional
load. We found that learning behavior across six monkeys is con-
sistently best predicted with a model combining (i) fast working
memory and (ii) slower reinforcement learning from differently

weighted positive and negative prediction errors as well as (iii)
selective suppression of nonchosen feature values and (iv) a
meta-learning mechanism that enhances exploration rates based
on amemory trace of recent errors. The optimal model parameter
settings suggest that these mechanisms cooperate differently at
low and high attentional loads. Whereas working memory was
essential for efficient learning at lower attentional loads, enhanced
weighting of negative prediction errors and meta-learning were
essential for efficient learning at higher attentional loads. Together,
these findings pinpoint a canonical set of learning mechanisms
and suggest how they may cooperate when subjects flexibly adjust
to environments with variable real-world attentional demands. ■

INTRODUCTION

Cognitive flexibility is realized through multiple mecha-
nisms (Dajani & Uddin, 2015), including recognizing that
environmental demands change, the rapid updating of
expectations, and the shifting of response strategies away
from irrelevant toward newly relevant information. The
combination of these processes is a computational chal-
lenge as they operate on different time scales ranging from
slow integration of reward histories to faster updating of
expected values given immediate reward experiences
(Botvinick et al., 2019). How fast and slow learning pro-
cesses cooperate to bring about efficient learning is not
well understood.
Fast adaptation to changing reward contingencies

depends on a fast learning mechanism. Previous studies
suggest that such a fast learning strategy can be based
on different strategies. One strategy involves memorizing
successful experiences in a working memory (WM) and
guiding future choices to those objects that have highest
expected reward value in WM (Alexander & Womelsdorf,
2021; McDougle & Collins, 2020; Viejo, Girard, Procyk, &
Khamassi, 2018; Alexander & Brown, 2015; Collins, Brown,
Gold, Waltz, & Frank, 2014; Collins & Frank, 2012). This
WM strategy is similar to recent “episodic” learningmodels
that store instances of episodes as a means to increase

learning speed when similar episodes are encountered
(Botvinick et al., 2019; Gershman & Daw, 2017).

A second fast learning mechanism uses an attentional
strategy that enhances learning from those experiences
that were selectively attended (Oemisch et al., 2019;
Niv et al., 2015; Rombouts, Bohte, & Roelfsema, 2015).
The advantage of this strategy is an efficient sampling
of values when there are many alternatives or uncertain
reward feedback (Farashahi, Rowe, Aslami, Lee, &
Soltani, 2017; Leong, Radulescu, Daniel, DeWoskin, &
Niv, 2017; Kruschke, 2011). Empirically, such an atten-
tional mechanism accounts for learning values of objects
and features within complex multidimensional stimulus
spaces (Hassani et al., 2017; Leong et al., 2017; Niv
et al., 2015; Wilson & Niv, 2011). In these multidimen-
sional spaces, learning from sampling all possible object
instances can be impractical and slows down learning to a
greater extent than what is observed in humans and mon-
keys (Oemisch et al., 2019; Farashahi, Rowe, et al., 2017).
Instead, learners appear to speed up learning by learning
stronger from objects that are attended and actively cho-
sen, while penalizing features associated with nonchosen
objects (Oemisch et al., 2019; Hassani et al., 2017; Leong
et al., 2017; Niv et al., 2015; Wilson & Niv, 2011).

In addition toWM and attention-based strategies, various
findings indicate that learning can be critically enhanced
by selectively increasing the rate of exploration during
difficult or volatile learning stages (Soltani & Izquierdo,
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2019; Khamassi, Quilodran, Enel, Dominey, & Procyk,
2015). Such ameta-learning strategy, for example, increases
the rate of exploring options as opposed to exploiting
previously learned value estimates (Tomov, Truong,
Hundia, & Gershman, 2020). This and other meta-learning
approaches have been successfully used to account for
learning rewarded object locations in monkeys (Khamassi
et al., 2015) and for speeding up learning of multiarm
bandit problems (Wang et al., 2018).

There is evidence for all three proposed strategies in
learning, but only few empirical studies characterize the
contribution of different learning strategies. Thus, it is
unknown whether WM, attention-augmented reinforce-
ment learning (RL), and meta-learning approaches are all
used during learning in differently complex environments
and whether they differently cooperate at low and high
learning difficulty.

To address this issue, we set out to test and disentangle
the specific contribution of various computational mech-
anisms for flexibly learning the relevance of visual object
features. We trained six monkeys to learn the reward
value of object features in environments with varying
numbers of irrelevant distracting feature dimensions. By
increasing the number of distracting features, we in-
creased attentional load, which resulted in successively
slower learning behavior. We found that, across monkeys,
learning speed was best predicted by a computational RL
model that combines WM, attention-augmented RL, a
separate learning rate for erroneous choices, and meta-
learning. The optimal model parameter settings, which
account for a significant fraction of the observed choices,
suggest that the contribution of these individual learning
mechanisms varied systematically with attentional load.
WM contributed to learning speed particularly at low
and medium loads, meta-learning contributed maximal
at high loads, whereas selective decay of nonattended
feature values was an essential learning mechanism
across all attentional loads.

METHODS

Experimental Design

Six male macaque monkeys, age ranging from 6 to 9 years
and weighing 8.5–14.4 kg, performed the experiments.
All animal and experimental procedures were in accor-
dance with the National Institutes of Health Guide for
the Care and Use of Laboratory Animals and the Society
for Neuroscience Guidelines and Policies and approved
by the Vanderbilt University Institutional Animal Care and
Use Committee.

The experiment was controlled by the Unified Suite for
Experiments using the Unity 3-D game engine for behav-
ioral control and visual display (Watson, Voloh, Thomas,
Hasan, &Womelsdorf, 2019). Four animals performed the
experiment in cage-based touchscreen Kiosk Testing
Stations described in Womelsdorf et al. (2021), and two

animals performed the experiment in a sound-attenuating
experimental booth. All experiments used 3-D rendered
objects, so-called Quaddles (Watson, Voloh, Naghizadeh,
& Womelsdorf, 2019), that were defined by their body
shape, arm style, surface pattern, and color (Figure 1A).
We used up to nine possible body shapes, six possible
colors, 11 possible arm types, and nine possible surface
patterns as feature values. The six colors were equidistant
within the perceptually defined color space CIELAB.
Objects extended ∼3 cm on the screen corresponding to
∼2.5° of visual angle and were presented either on a
24-in. BenQ monitor or an Elo 2094L 19.5 LCD touch-
screen running at a 60-Hz refresh rate with a 1920 ×
1080 pixel resolution.

Task Paradigm

Animals performed a feature–reward learning task that
required learning through trial-and-error which feature
of multidimensional objects is associated with reward.
The feature that was rewarded, that is, the feature–reward
rule, stayed constant for blocks of 35–60 trials and then
switched randomly to another feature (Figure 1B).
Individual trials (Figure 1C) were initiated by either
touching a central blue square (four monkeys) or fixating
the blue square for 0.5 sec. After a 0.3-sec delay, three
objects were presented at the corners of a virtual square
grid spanning 15 cm on the screen (∼24°). The animals
had up to 5 sec to choose one object by touching it for
0.1 sec (four monkeys) or maintaining gaze at an object
for 0.7 sec (two monkeys). After the choice of an object,
visual feedback was provided as a colored disk behind
the selected object (yellow/gray for rewarded/not rewarded
choices, respectively) concomitant with auditory feedback
(low/high-pitched sound for nonrewarded/rewarded
choices, respectively). Choices of the object with the
rewarded feature resulted in fluid reward of 0.3 sec after
the onset of the visual and auditory feedback.
For each learning block, a unique set of objects was

selected that varied in one, two, or three feature dimen-
sions from trial to trial. The nonvarying features were a
spherical body shape, straight arms with blunt ending,
gray color, or uniform surface. These feature values were
never associated with reward during the experiment and
thus represent reward-neutral features. These neutral fea-
tures defined a neutral object to which we added either
one, two, or three nonneutral feature values rendering
them 1-D, 2-D, and 3-D, respectively (Figure 1C). For
blocks with objects that varied in one feature dimension
(1-D attentional load condition), three feature values
from that dimension were chosen at the beginning of
the block (e.g., body shapes that were oblong, pyramidal,
and cubic). One of these features was associated with
reward, whereas the two remaining features were not
reward associated and thus served as distracting features.
Within individual trials, objects never had the same fea-
ture values for these dimensions as illustrated for three

80 Journal of Cognitive Neuroscience Volume 34, Number 1

D
ow

nloaded from
 http://direct.m

it.edu/jocn/article-pdf/34/1/79/2007813/jocn_a_01780.pdf by D
ELETE York U

niversity user on 16 M
arch 2023



Figure 1. Task paradigm and feature space. (A) The task used 3-D rendered Quaddle objects that varied in color, pattern, shape, and arm style. The
features gray color, straight arms, and spherical body shape were never rewarded in any of the experiments and therefore constitute “neutral”
features. (B) For successive blocks of 35–60 trials, a single feature was rewarded. (C) The attentional load conditions differed in the number of
nonneutral feature dimensions that varied across trials in a block. Blocks with 1-D, 2-D, and 3-D objects contained stimuli varying features in one,
two, and three feature dimensions. (D) Trials were initiated by touching or fixating a central stimulus. Three objects were shown at random locations,
and subjects had to choose one by either touching (four monkeys) or fixating (two monkeys) an object for ≥0.7 sec. Visual feedback indicated correct
(yellow) versus error (gray; not shown) outcomes. Fluid reward followed correct outcomes. (E) Sequences of three example trials for a block with
1-D objects (top row; shape varied), 2-D objects (center; color and arms varied), and 3-D objects (bottom row, body shape, arms, and color). (F)
Same as E but for an object set varying surface pattern, arms, and color. Bl = block; Nr. = number.
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successive example trials in Figure 1E and F (top row).
The feature values of the unused dimensions were the
features of the neutral objects in all trials of that block.
For blocks with objects varying in two feature dimensions,
a set of three feature values per dimension was selected to
obtain nine unique objects combining these features. Only
one of the features was associated with reward, whereas
the other two feature values of that dimension and the fea-
ture values of the other dimension were not linked to re-
ward. Figure 1E and F (center row) illustrates three
example trials of these blocks of the 2-D attentional load
condition. For blocks with objects varying in three feature
dimensions (3-D attentional load condition), three fea-
ture values per dimensions were selected so that the
three presented objects had always different features of
that dimension, which led to 27 unique objects combin-
ing these features. Again, only one feature was associated
with reward in a given block, whereas all other feature
values were not linked to reward.

Blocks with objects that varied in one, two, and three
feature dimensions constitute 1-D, 2-D, and 3-D atten-
tional load conditions because they vary the number of
feature dimensions that define the search space when
learning which feature is rewarded. The specific dimen-
sion, feature value, and dimensionality of the learning
problem varied pseudorandomly from block to block.
During individual experimental sessions, monkeys per-
formed up to 30 learning blocks.

Gaze Control

For two animals, gaze was monitored with a Tobii Spectrum
with a 600-Hz sampling rate and a binocular infrared eye
tracker. For these animals, the experimental session began
with a 9-point eye-tracker calibration routine and later
reconstruction of object fixations using a robust gaze clas-
sification algorithm described in Voloh, Watson, König,
and Womelsdorf (2020).

Statistical Analysis

All analyses were performed with custom MATLAB code
(Mathworks, Inc.). Significance tests control for the false
discovery rate (FDR) with an alpha value of .05 to account
for multiple comparisons (Benjamini & Hochberg, 1995).

General Formulation of Rescorla–Wagner
RL Models

The value of feature i in trial t, before the outcome was
known, is denoted by VF

i; t . The superscript F stands for
feature, to distinguish it from the value of an object that
will be introduced in the next section. The new value
VF
i; tþ1 available for decisions on the next trial depends on

which features were at trial t present in the chosen object
and whether this choice was rewarded Rt = 1, or not Rt =

0. The values of features that were present in objects and
that were not chosen, as well as those that could appear
in the course of the session but were not present on the
current trial, decay with a parameter value ωRL

t , where “RL”
denotes that the decay component is from the reinforce-
ment component of the model as opposed to the decay of
the WM component introduced below. The features that
were present in the chosen and rewarded object increase
in value, because the reward prediction error (PE), Rt −
VF
i;t, is positive, whereas when the chosen object was not

rewarded, the value decays. We have summarized these
update rules in the following equations:

VF
i; tþ1 ¼ VF

i;t þ ηt f A;Vi; t

� Rt − VF
i;t

� �
; features of chosen objects

(1)

¼ 1− ωRL
nc

� �
VF
i; t features of nonchosen objects

(2)

¼ 1− ωRL
np

� �
VF
i;t nonpresented features (3)

The factor f A;Vi;t is explained further down. We have indi-
cated a trial dependence in gain η and allow the decay
parameter ω to depend on whether the feature was present
in the nonchosen object (nc) or whether it was part of the
stimulus set of the session but not presented (np) in the
current trial. It further carries a superscript RL to indicate
it is part of the RL formulation rather than WM (superscript
WM). The setting of these parameters depends on the spe-
cific model version. In the base RL model, there is no
feature-value decayωnc,t=ωnp,t=0 and the gain is constant
and equal to η. In the next model “RL gain and loss,” the
gain depends on whether the choice was rewarded (gain)
or not rewarded (loss), ηt = ηGain Rt + ηLoss (1 − Rt),
which introduces two new parameters ηGain and ηLoss for
rewarded and nonrewarded choices, respectively.
In most models, the decay for nonchosen and not-

presented features was equal ωnc,t = ωnp,t = ωRL, intro-
ducing only a single additional parameter. In the so-called
hybrid models, we add a feature-dimension gain factor
f A;Vi;t , which reflects attention to a particular dimension.
It is calculated using a Bayesian model (see below) and
is indicated by a superscript V because it affects the value
update. Hence, it acts as if information about the role of
a certain dimension in the acquisition of the reward is not
available. The choice probability pRLi;t for object i at trial t
is determined using a softmax function:

pRLi;t ¼
exp βt

P
j2Oi

f A;CPj; t VF
j;t

� �
P

k exp βt
P

j2Ok
f A;CPj; t VF

j; t

� � (4)

The sum in the exponent of the preceding expression is
over the features j that are part of object i, which defines
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the set Oi. The factor βt in the exponent determines the
extent to which the subject exploits, that is, systematically
chooses the object with the highest compound value
(reflected in a large β), or explores, that is, makes choices
independent of the compound value (reflected in small β).
In most model versions, the β did not change over trials
(parameter βRL), whereas in the meta-learning models with
adaptive exploration, its value was adaptive, reflecting the
history of reward outcomes, and is thus trial dependent
(see the following subsection). The factor f A;CPi;t is a
feature-dimension gain factor that acts only in the choice
probability; it reflects that some dimensions do not con-
tribute to the choice probability when they are deemed
irrelevant (not attended).

Adaptive Exploration

For models with adaptive βt values, we follow the model
of Khamassi, Enel, Dominey, and Procyk (2013), which
involves determining an error trace:

βtþ1* ¼ βt*þ αþ max δt; 0ð Þ þ α−min δt; 0ð Þ (5)

where the min and max functions are used to select the
negative and positive parts, respectively, of an estimate
of the reward PE,

δt ¼ Rt−
1

# j 2 Oið Þ
X

j2Oi
VF
j;t (6)

This is a different form of the PE than above, because
here we need to consider all features in a chosen object,
rather than each feature separately. The error trace is
translated into an actual β value using

βt ¼
βm

1þ exp −ω1 βt*− ω2
� �� � (7)

This adaptive component replaces one parameter by
five new parameters: α+, α−, βm, ω1, and ω2, of which
we fixed four in most models to the following values that
came out of pilot parameter explorations, namely, α+ =
−0.6, α− = −0.4, ω1 = −6, and ω2 = 0.5, and varied βm

and sometimes varied α− as well.

Attentional Dimension Weight

The attentional gain factor ( f A;Vi; t and f A;CPi; t ) uses a Bayesian
estimate of what the target feature f is, hence what the
relevant feature dimension is, and weighs the contribu-
tion of each feature value according to whether it is part
of the target dimension (Oemisch et al., 2019; Hassani
et al., 2017; Niv et al., 2015). From the target feature prob-
ability p( f|D1:t) (see Equations 5–7 in Hassani et al. [2017]
for the derivation of the equation we use to update this
probability from trial to trial), we can obtain a target di-
mension probability by summing over all the feature
values f(d) that belong to a particular dimension d,

pDd;t ¼ p djD1:tð Þ ¼
X

f2 f dð Þp f jD1:tð Þ (8)

this is turned into a feature gain

ϕA
d;t ¼

pDd;t
� �α

P
e pDe; t
� �α (9)

which weighs feature values in each object according to
their dimension d( f ); for an object i, this becomes Vi,t =P

j2Oi
ϕA

d jð Þ;tV
F
j; t , and which we incorporate as a feature-

dependent factor f Ai; t = ϕA
d ið Þ;t in the relevant expressions

(Equations 1 and 4, for the value and choice probabil-
ity, indicated with additional superscripts V and CP,
respectively).

Stickiness in Choice Probability

Stickiness of choosing objects refers to choosing the object
whose feature values overlap with the previously chosen
one and represents perseveration (Balcarras, Ardid,
Kaping, Everling, & Womelsdorf, 2016). It is implemented
by making the choice probability dependent on whether
a feature on the previous trial is present in an object.

pSi ¼
exp βt

P
j2Oi

f A;CPj;t VF
j;t

� �
þ Δt−1;iP

k exp βt
P

j2Ok
f A;CPj;t VF

j;t

� �
þ Δt−1;i

(10)

Here, Δt − 1,i is equal to eγ − 1 when object i presented
on trial t contains at least one feature that was also pres-
ent in the chosen object on the previous trial (t − 1). By
subtracting 1, we ensure that when γ = 0, there is no
stickiness contribution to the choice. In our setup, it is
possible that more than one of the current objects contain
features that were present in the previously chosen object.

Combined WM/RL Models

WMmodels are formulated in terms of the value VWM
i;t of an

object i irrespective of what features are present in it
(Collins & Frank, 2012). These values are initialized to a
noninformative value of 1

no
, where no is the number of

objects. When each of the objects has this value, there is
no preference in choosing one above the other. When an
object is chosen on trial t, the value is set to VWM

i;tþ1= 1when

rewarded, whereas it is reset to the original value VWM
i;tþ1=

1
no

when the choice was not rewarded. All other values decay
toward the original value with a decay parameter ωWM:

VWM
i;tþ1 ¼ VWM

i;t −ωWM VWM
i;t −

1
no

� �
(11)

The values are then directly used in the choice proba-
bilities (also denoted pChoice):

pWM
i;t ¼

exp βWMVWM
i;t

� �
P

j exp βWMVWM
j;t

� � (12)
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This component mechanism thus introduces two new
parameters, a decay parameter ωWM and the softmax
parameter βWM, which are separately varied in the fitting
procedure.

Integrating Choice Probabilities

In the most comprehensive models, choices are deter-
mined by a weighted combination of the choice probabil-
ities derived from the RL and WM components, referred
to as pTi;t (T stands for total),

pTi;t ¼ wtpWM
i; t þ 1−wtð ÞpRLi;t (13)

A larger wt means more weight for the WM predictions
in the total choice probability. The update of wt reflects
the value of the choice probability for the choice made
and the capacity limitations of the WM:

wtþ1 ¼ pWMC
t wt

wtpWMC
t þ 1−wtð ÞpRLCt

(14)

where

pRLCt ¼ pRLa tð Þ;t rt þ 1− pRLa tð Þ;t
� �

1− rtð Þ:

This expression selects from among two possible
values for pRLCt depending on whether rt = 1 or 0.
Here, a(t) is the index of the object chosen on trial t.
In addition,

pWMC
t ¼ α pWM

a tð Þ;t rt þ 1− pWM
a tð Þ;t

� �
1− rtð Þ

� �

þ 1− αð Þ 1
no

� �
(15)

where α = min(1, CWM
nS

) and CWM is the WM capacity, es-
sentially the number of objects about which information
can be accessed, and nS is the number of objects that can
be presented during the task. It is determined as the
number of objects whose value VWM

i;t exceeds 1
no
by a mar-

gin of 0.01. When nS is much larger than CWM, the
information in pWM, which is unlimited in capacity but
decays with time, cannot be read out, instead pWMC

t =
1/no. Hence, when pRLa tð Þ;t exceeds 1

no
, it will win the

competition for influence and reduce wt toward zero
and, with that, the influence of WM via pWM

i;t .

Posterior Predictive Checks and
Model Identifiability

Our overall focus was to evaluate how fit parameters vary
with task condition and across subjects. For this, it is nec-
essary that the parameters have a clear meaning, that
they are reproducible (model identifiability), and that
the objective function value correlates with the degree
to which model choices match the subject’s choices (a
kind of posterior predictive test). To assess this, we

performed a number of validation analyses on the model
that we had found to best fit the subject’s choices (the
top-ranked model in Figure 3A, Model 1; Table 1), which
was characterized by eight fitting parameters, which
could present a challenge to fitting procedures.
Our objective function was the negative log likelihood

(NLL), which was minimized through a call to the
MATLAB function fminsearch followed by a call to fmin-
con. We did this for multiple different initial conditions
and found a few distinct solutions, each converged to
from multiple different initial values and each corre-
sponding to slightly different values of the objective func-
tion. These differences were typically smaller than the
differences between different models. This shows that
the algorithm can get stuck in local minima. Note that
this did not occur for models with fewer parameters.
We evaluated the behavioral performance of each of

the corresponding parameter values by generating
choice sequences based on sampling randomly according
to the model-generated choice probabilities, repeating
the sampling multiple times for each unique parameter
set derived from an initial condition (see Appendix;
Appendix Figure A1). The posterior predictive perfor-
mance was characterized by determining the mean re-
ward and the overlap between the model’s and the
subject’s choices—quantified as the fraction of common
choices. These performance measures are different from
the NLL value that we minimized, because there we took
the subject’s choices and the received rewards to update the
(feature) values in the model and determined the choice
probability for each trial according to the model; the nega-
tive log of these adds to the objective function. In contrast,
here we generate choices, often different from those of
the subject because we use the choice probabilities from
the model for the fitted parameter values but updated
trial-to-trial with model choices and the corresponding
rewards according to the task rule. The resulting choice–
reward sequence generated is also different from the
measured one, but it is the one used to update themodel’s
feature values across trials. It is therefore likely to gen-
erate different choices across blocks than the subject
even when using the same stimulus sequence. The model
can be considered good when the experimentally gener-
ated sequence cannot be distinguished from the distribu-
tion of the model-generated choices; this can occur for
rather low values of overlap, when the choice probabili-
ties are much smaller than 1.
We find that the lower the NLL, the higher the overlap

in choices is (Appendix Figure A1A). This means that NLL
is a useful indicator of the quality of the fit. For the ex-
ploratory model runs, the overlap in choices is low but
does exceed 0.5. When considering the same distribution
of choices across options, but made randomly, which we
accomplished by randomly permuting the model’s
choices, the overlap is reduced by about 0.04 (8%;
Appendix Figure A1B), ending up below 0.5. Note that
this is higher than expected based on purely random
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Table 1. Overview of the Parameter Used in Models Evaluated and Ranked According to BIC Higher than the Base RL Model (Which is the Model Ranked 26th)

Model Rank
RL Gain
(η )

RL Decay
(ω)

RL Softmax
(β)

RL Atn
(α)

WM Decay
(ω)

WM Softmax
(β)

WM Capacity
(CWM)

Stickiness
(γ) #para

1 ηGain, ηLoss ωRL βm, α− (α+, ω1, ω2 fix) – ωWM βWM CWM – 8

2 ηGain, ηLoss ωRL βm (α+, α−, ω1, ω2 fix) – ωWM βWM CWM γ 8

3 ηGain, ηLoss ωRL βRL – ωWM βWM CWM γ 8

4 ηGain, ηLoss ωRL βm (α+, α−, ω1, ω2 fix) – ωWM βWM CWM – 7

5 ηGain, ηLoss ωRL βRL – ωWM βWM CWM – 7

6 η ωRL βm (α+, α−, ω1, ω2 fix) – ωWM βWM CWM – 7

7 η ωRL βRL – ωWM βWM CWM – 6

8 η ωRL βm (α+, α−, ω1, ω2 fix) – ωWM βWM CWM – 6

9 η ωRL βm, α− (α+, ω1, ω2 fix) – ωWM βWM CWM γ 7

10 ηGain, ηLoss ωRL βm, α− (α+, ω1, ω2 fix) – – – – – 5

11 ηGain, ηLoss ωRL βm (α+, α−, ω1, ω2 fix) – – – – γ 5

12 ηGain, ηLoss ωRL βRL – – – – γ 5

13 η ωRL βm (α+, α−, ω1, ω2 fix) – – – – – 3

14 η ωRL βRL – – – – γ 4

15 η ωRL βRL – – – – – 3

16 η ωRL βRL α ωWM βWM CWM – 7

17 ηGain, ηLoss ωRL βRL – – 4

18 ηGain, ηLoss ωRL βRL α ωWM βWM CWM – 8

19 η – βm (α+, α−, ω1, ω2 fix) – ωWM βWM CWM – 5

20 η ωRL βRL α ωWM βWM CWM γ 8

21 η – βRL – ωWM βWM CWM – 5

22 η – βRL – ωWM βWM CWM γ 6

23 ηGain, ηLoss – βRL – ωWM βWM CWM – 6

24 η – βRL – – – – γ 3

25 ηGain, ηLoss – βRL – – – – – 3

26 η – βRL – – – – – 2

See Figure 3 text for a graphical illustration of the model rank ordering. Atn = Attention.
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choices with equal probability for each option, because
both the subject and the model make the correct choice
more than chance and we labeled the correct choice as
Option 1. The upshot is that lower NLL leads to more
overlap in choices and therefore is a good basis to com-
pare models with.

A typical issue for fitting functions with many parame-
ters is shallow optima in which similar values for the ob-
jective function are found when covarying two or more
parameters. This could affect the identifiability of the
model, because a given parameter setting would gener-
ate model choices that would be most optimally fit by
quite different parameter values. As mentioned in the
preceding text, we ran the optimization procedure for
multiple initial conditions and then generated multiple-
choice sequences for each of them. We fitted each of
these sequences again. This gave us a multidimensional
distribution of parameters’ values (Appendix Figure A1C).
We found that three parameters displayed a larger range
of values than the rest of them. Specifically, for some ini-
tial conditions, they created outlier values that were close
to the upper-bound constraints we imposed on the opti-
mization with fmincon; these outlier values were also
present in the fits of the model-generated sequences. The
most affected was the beta parameter forWM (βWM), as well
the WM capacity (CWM), and to a lesser extent, also the
(adaptive) beta parameter for RL model (βm). The under-
lying cause was the covariation between CWM and βWM,
which we observed as a clear correlation between two
fitting parameters across the refitted parameter values
(Appendix Figure A1D). We address this effect by using
a cross-validation procedure (see below) to deal with the
outlier parameter values.

Model Comparison and Cross-validation

To compare models, we calculated the log likelihood
(normalized by the number of choices) of each model fit
to the choices of themonkeys and computed the Bayesian
information criterion (BIC) for each model that penalizes
models according to the number of free parameters. We
rank ordered the BIC to identify the model most predic-
tive of the monkey’s choices. We used a cross-validation
procedure for validating that the best-fit models do not
overfit the data. For the cross-validation, we evaluated
how well a model predicted in terms of the NLL the sub-
ject’s choices of (test) learning blocks that were withheld
when fitting the model parameters on the remaining
(training) data sets. We repeated the cross-validation 50
times and used the average parameter values across these
50 cross-validation runs to simulate the choices of the
monkey. For each cross-validation, we cut the entire data
set at two randomly chosen blocks, yielding three parts.
The two largest parts were assigned as training and test
sets. We did this to keep the trials in the same order as
the monkey performed them, as the memory-dependent
effects in the model (and presumably the monkey) extend

beyond the block boundaries. This is different from the
standard procedure, where blocks were randomly as-
signed to test and training sets, hence breaking the block
ordering that is important for the model. In general, the
cross-validation results were qualitatively similar to the
results optimizing the entire data set and gave near-
identical rank ordering of the models with identical top-
ranked models. This finding rules out overfitting.

Relation of Model Parameter Values and Behavior

To test how each of the model parameters of the best-
fitting model related to the learning and performance
levels across different attentional load conditions, we con-
structed linear mixed effects (LME) models (Pinherio &
Bates, 1996). The models predict the learning speed LS
(corresponding to the number of trials to criterion perfor-
mance) or the plateau accuracy AC (percent correct over
trials after criterion was reached) based on the individual
model parameter values (Par1, Par2, … Parn) and the
attentional load condition (with three levels for the 1-D,
2-D, and 3-D load conditions). All models used as ran-
dom effects the factor Monkeys (each of six animals) to
control for individual variations. For the best-fitting model,
this LME had the form:

LS or Accuracy ¼ Par1βWM þ Par2CWM

þ Par3ωWMWM decay

þ Par4βm * adaptive exploration

þ Par5αþamplitude for adaptive exploration

þ Par6ωRL þ Par7ηGain þ Par8ηloss
þ AttLoad þ 1jMonkeyð Þ þ bþ ε

(16)

In a second LME analysis, we tested which learning pa-
rameter values of the best-fit model are able to predict fast
versus slow learners. To test this, we ranked subjects by
their learning speed (their average trials-to-criterion) for
each attentional load condition. We tested whether the
rank ordering (learner rank) was accounted for by indi-
vidual model parameter values. Using the parameter
values of the best-fitting model, we tested the LME of
the form:

Learner rank ¼ Par1βWM þ Par2CWM

þ Par3ωWMWM decay þ Par4βm * adapt: explor:

þ Par5αþampl: for adapt: explor: þ Par6ωRL

þ Par7ηGain þ Par8ηloss þ 1jAttLoadð Þ
þ bþ ε

(17)

All inference statistics of the linear effects models ac-
count for multiple comparisons by adjusting the signifi-
cance level according to an FDR of p = .05.
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RESULTS

Behavioral Performance

We measured how six monkeys learned the relevance of
object features in a learning task while varying the number
of reward-irrelevant, distracting feature dimensions of
these objects from one to three. On each trial, subjects
chose one of three objects and either did or did not
receive reward, to learn by trial-and-error which object
feature predicted reward. The rewarded feature could be
any one of 37 possible features values from four different
feature dimensions (color, shape, pattern, and arms) of
multidimensional Quaddle objects (Figure 1A; Watson,
Voloh, Naghizadeh, et al., 2019). The rewarded feature,
that is, the reward rule, stayed constant within blocks of
35–60 trials (Figure 1B). Learning blocks varied in the
number of nonrewarded, distracting features (Figure 1C).
Subjects had 5 sec to choose an object that triggered cor-
rect or error feedback in the form of a yellow or gray halo
around the chosen object, respectively (Figure 1D). The
first of three experimental conditions was labeled 1-D
attentional load because all the distractor features were
from the same dimension as the target feature (e.g., dif-
ferent body shapes; see examples in the top rowof Figure 1E
and F). At 2-D attentional load, features of a second di-
mension varied in addition to features from the target
feature dimension (e.g., objects varied in body shapes
and surface patterning). At 3-D attentional load, object
features varied along three dimensions (e.g., varying in
body shapes, surface patterns, and arm styles; bottom
row in Figure 1E and F).
Six monkeys performed a total number of 989 learning

blocks, completing on average 55/56/54 (SE = 4.4/4.3/4.2,
range = 41–72) learning blocks for the 1-D, 2-D, and 3-D
attentional load conditions, respectively. The number of
trials in a block needed to learn the relevant feature, that
is, to reach 75% criterion performance increased for the
1-D, 2-D, and 3-D attentional load condition from, on
average, 6.5, 13.5, and 20.8 trials (SEs = 4.2/8.3/6.9;
Kruskal–Wallis test, p = .0152; ranks: 4.8, 10.2, and 13.6;
Figure 2A and B). Learning speed did not differ when
the rewarded feature in a block was of the same or of a
different dimension as the rewarded feature in the imme-
diately preceding block (intradimensional vs. extradimen-
sional block transitions; Wilcoxon rank sum test, p= .699,
rank sum = 36; Figure 2C).
Flexible learning can be influenced by target- and

distractor-history effects (Banaie Boroujeni, Watson, &
Womelsdorf, 2020; Rusz, Le Pelley, Kompier, Mait, &
Bijleveld, 2020; Chelazzi, Marini, Pascucci, & Turatto,
2019; Failing & Theeuwes, 2018; Le Pelley, Pearson,
Griffiths, & Beesley, 2015), which may vary with atten-
tional load. We tested this by first evaluating the presence
of latent inhibition, which refers to slower learning of a
newly rewarded target feature when that feature was a
(learned) distractor in the preceding block compared to
when the target feature was not shown in the previous

block. We did, however, not find a latent inhibition effect
(paired signed rank test: p = .156, signed rank = 3;
Figure 2D, left). A second history effect is persevering
choosing the feature that was a target in the previous
block. We quantified this target perseveration by compar-
ing learning in blocks in which a previous (learned) target
feature became a distractor, to learning blocks in which
distractor features were new. We found that target persev-
eration significantly slowed down learning (paired signed
rank test: p = .0312, signed rank = 0; Figure 2D, right),
which was significantly more pronounced in the high
(3-D) than in the low (1-D) attentional load condition
(paired signed rank test, again: p = .0312, signed rank =
0; Figure 2E). These learning history effects suggest that
learned target features had a significant influence on
future learning in our task, particularly at high attentional
loads, whereas learned distractors had only marginal or
no effects on subsequent learning.

Multicomponent Modeling of Flexible Learning of
Feature Values

To discern specific mechanisms underlying flexible
feature-value learning in individualmonkeys, we fit a series
of RL models to their behavioral choices (see Methods).
These models formalize individual cognitive learning
mechanisms and allowed characterizing their role in
accounting for behavioral learning at varying attentional
loads. We started with the classical Rescorla–Wagner rein-
forcement learner that uses two key mechanisms: (i) the
updating of value expectations of features VF every trial t by
weighting reward PEs with a learning gain η: VF

i;tþ1 = VF
i;t +

η(Rt − VF
i;t) (with reward Rt = 1 for a rewarded choice and

zero otherwise) and (ii) the probabilistic (“softmax”) choice
of an object O given the sum of the expected values of its

constituent features Vi, pChoice
RL
i =

exp βRL
P

j2Oi
VF
j

� �
P

j
exp βRL

P
k2Oj

VF
k

� �
(Sutton & Barto, 2018). These two mechanisms incorpo-
rate two learning parameters: the weighting of PE infor-
mation by η (often called the learning rate), η(PE ), and
the degree to which subjects explore or exploit learned
values represented by βRL, which is small or close to zero
when exploring values and larger when exploiting values.

We augmented the Rescorla–Wagner learning model
with up to seven additional mechanisms to predict the
monkey choices (Table 1; see Discussion and Appendix
for the results with non-Rescorla–Wagner models such
as attentional switching and hypothesis-testing models).
The first of these mechanisms enhanced the expected
values of all object features that were chosen by decaying
feature values of nonchosen objects. This selective decay
improved the prediction of choices in reversal learning
and probabilistic multidimensional feature learning tasks
(Oemisch et al., 2019; Hassani et al., 2017; Radulescu,
Daniel, & Niv, 2016; Niv et al., 2015; Wilson & Niv,
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2011). It is implemented as decay ωRL of feature values Vi
from nonchosen features and thereby enhanced the value
estimate for chosen (and hence attended) features for the
next trial t:

VF
i;tþ1 ¼ 1−ωRL� �

VF
i;t Decay of nonchosen feature valuesð Þ

(18)

As a second mechanism, we considered a WM process
that uploads the identity of rewarded objects in an STM.
Such a WM can improve learning of multiple stimulus–
response mappings (Collins, Ciullo, Frank, & Badre,
2017; Collins & Frank, 2012) and multiple reward loca-
tions (Viejo et al., 2018; Viejo, Khamassi, Brovelli, &
Girard, 2015). Similar to Collins and Frank (2012), we

Figure 2. Learning performance. (A) Average learning curves across six monkeys for the 1-D, 2-D, and 3-D load conditions. (B) Learning curves for
each monkey (colors) for 1-D, 2-D, and 3-D (low-to-high color saturation levels). All monkeys showed fastest learning for the low-load condition and
slowest learning for the high-load condition. Curves are smoothed with a five-trial forward-looking window. (C, left) The average trials-to-criterion
(75% accuracy over 10 consecutive trials) for low to high attentional loads (x axis) for blocks in which the target feature was either of the same
(intradimensional [ID]) or different (extradimensional [ED]) dimension—as in the preceding trial. (C, right) Average number of trials-to-criterion
across load conditions. Gray lines denote individual monkeys. Errors are SE. (D) The red color denotes average trials-to-criterion for blocks in which
the target feature was novel (not shown in the previous block) or when it was previously a learned distractor. The blue color denotes the condition in
which a distractor feature was either novel (not shown in the previous block) or part of the target in the previous block. When distractors were
previously targets, learning was slower. (E) Latent inhibition of distractors (red) and target perseveration (blue) at low, medium, and high loads.
Errors indicate SE. Avg. = average; Dist. = distractor; Persev. = perseveration; Prev. = previous.
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uploaded the value of an object in WM (VWM
i ) when it was

chosen and rewarded and decayed its value with a time
constant 1

ωWM. WM proposes a choice using its own choice
probability pChoiceWM, which competes with the pChoiceRL

from the RL component of the model. The actual behav-
ioral choice is the weighted sum of the choice probabil-
ities of the WM and RL components w( pChoiceWM) +
(1 − w)pChoiceRL. A weight of w > 0.5 would reflect
that the WM content dominates the choice, which would
be the case when the WM capacity can maintain object
values for sufficiently many objects before they fade
away (see Methods). This WM module reflects a fast “one-
shot” learning mechanism for choosing the recently
rewarded object.
As a third mechanism, we implemented a meta-learning

process that adaptively increases the rate of exploration
(the β parameter of the standard RL formulation) when
errors accumulate. Similar to Khamassi et al. (2013), the
mechanism uses an error trace βt*, which increases when
a choice was not rewarded, by an amount proportional
to the negative PE for that choice with a negative gain
parameter α−, and decreases after correct trials propor-
tional to the positive PE weighted by a positive gain param-
eter α+ (Khamassi et al., 2013):

βtþ1* ¼ βt*þ αþ δt½ �þ
− α− −δt½ � Adjustment of exploration rateð Þ

(19)

where the PE is given by δt = Rt − Vt, with V reflecting the
mean of all the feature values of the chosen object. The
error trace contains a record of the recent reward per-
formance and was transformed into a beta parameter for
the softmax choice according to βRL

t = βmax

1þ exp −ω1 βt*−ω2ð Þð Þ
(Khamassi et al., 2013). Transiently increasing the explo-
ration rate increases the chances to find relevant object
features when there are no reliable, learned values to
guide the choice and there are multiple possible feature
dimensions that could be valuable. We kept α+ = −0.6,
α− = −0.4, ω1 = −6, and ω2 = 0.5 fixed and varied βmax

and, in some cases, α− as well, resulting in a fourth model
mechanism that could underlie flexible feature learning
under increasing attentional load.
We tested three other neurobiologically plausible can-

didate mechanisms that played important roles in prior
learning studies. A fifth mechanism implemented choice
stickiness to account for perseverative (repetitive) choices
independent of value estimates (Balcarras et al., 2016;
Badre, Doll, Long, & Frank, 2012). A sixth parameter real-
ized an “attentional” dimension weight during value
updates, which is realized by multiplying feature values
given the reward likelihood for the feature dimension
they belong to (Oemisch et al., 2019; Leong et al., 2017).
Finally, as a seventh parameter, we separately modeled
the weighting of negative PEs after error outcomes, ηLoss,
and the weighting of positive PEs for correct outcomes,

ηGain, to allow separate learning speeds for avoiding objects
that did not lead to reward (after negative feedback) and
for facilitating choices to objects that led to rewards (after
positive feedback; Taswell, Costa, Murray, & Averbeck,
2018; Lefebvre, Lebreton, Meyniel, Bourgeois-Gironde, &
Palminteri, 2017; Cazé & van der Meer, 2013; van den
Bos, Cohen, Kahnt, & Crone, 2012; Kahnt et al., 2009;
Frank, Moustafa, Haughey, Curran, & Hutchison, 2007;
Frank, Seeberger, & O’Reilly, 2004). We constructed
models that combined two, three, or four of these
mechanisms. This led to models with two to eight free
parameters (see Methods). Each model was fitted to the
behavioral data separately for each attentional load condi-
tion and for each individual monkey. We calculated the
BIC to rank order the models according to how well they
predicted actual learning behavior given the number of
free parameters.

WM, Adaptive Exploration, and Decaying Distractor
Values Supplement RL

We found that, across monkeys and attentional load con-
ditions, the RL model that best predicted monkeys’
choices during learning had four nonstandard compo-
nents: (i) WM, (ii) nonchosen value decay, (iii) adaptive
exploration rate, and (iv) a separate gain for negative PEs
(ηLoss; Figure 3). This model had the lowest BIC on aver-
age across all six monkeys and was ranked 1st for three
individual monkeys (Monkeys 1, 2, and 3; Figure 3A and
B; Table 1 shows the complete list of free model param-
eters for the rank-ordered models). The overall best-
ranked model ranked 4th, 5th, and 10th for the other
three monkeys (Figure 3A). The top-ranked model for
these three monkeys had three of the four mechanisms
in common with the overall best-fit model and differed
only in one parameter to the overall best-fit model. In
other words, the learning performance of monkeys was
best fit with a model that incorporated the selective for-
getting (feature value decay; for all six monkeys), a sep-
arate WM component (with three free parameters; for all
six monkeys), an adaptive exploration rate with or with-
out a free parameter (for all six monkeys), and a separate
learning rate for error outcomes (for five of six monkeys;
Figure 3A). The one monkey (Monkey 4) whose top-
ranked model did not use a learning rate for error out-
comes had instead the choice stickiness mechanism as
part of his best-fit model (the overall seventh model in
Figure 3A) and included the learning rate for errors in
his fourth best-ranked model (Figure 3A). Together,
these findings identify a “family” of good learning mech-
anisms across monkeys. Within this family, four cognitive
learning mechanisms most consistently contributed to
predict learning performance. One additional mechanism
(choice stickiness) played an important role in one of
the six animals but was not needed to account for the
behavior of the other five animals. Simulating the mon-
keys’ choices with the overall best-fitting model showed
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that it reproduced well the variable learning curves ob-
tained from the monkeys (Figure 3C).

To discern how the individual modelmechanisms of the
most predictive model contributed to the learning at low,
medium, and high attentional loads, we simulated the
choice probabilities for this full model as well as for partial
models that implemented only individual mechanisms

of that full model separately for each load condition
(Figure 4A and B). The simulations used the parameter
values of the overall best-fit model. This analysis con-
firmed that the best-fit full model was most closely pre-
dicting choices of the animals in all load conditions,
showing a difference between the model choice proba-
bilities and the monkeys’ choice accuracy of only ∼7%

Figure 3. Rank ordering of models with different combinations of mechanisms. (A) Models (rows) using different combinations of model
mechanisms (columns) are rank ordered according to their BIC. The top-ranked model combined four mechanisms that are highlight in red: decay of
nonchosen features, WM, adaptive exploration rate, and a separate learning gain for errors (losses). The 2nd, 3rd, and 4th ranked models are denoted
with cyan, green, and yellow bars, respectively. Thick horizontal bar indicates that the model mechanism was used in that model. The 26th ranked
model was the base RL model that used only a beta softmax parameter and a learning rate. (A, right) Model rank average (first column) and for each
individual monkey (Columns 2–7). See Table 1 for the same table in numerical format with additional information about the number of free
parameters for each model. (B) After subtracting the BIC of the 1st ranked model, the normalized BICs for each monkey confirm that the top-ranked
model has low BIC values for each monkey. (C) Average behavioral learning curves for the individual monkeys (left) and the simulated choice
probabilities of the top-ranked model for each monkey. The simulated learning curves are similar to the monkey learning curves providing face
validity for the model. Attent. = attentional; Dim. = dimension; neg. = negative; Norm. = normalized.
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across all three attentional load conditions (Figure 4C).
The reduced (partial) model that performed similarly
well across all attentional loads used the decay of non-
chosen features (ωRL) (ranked 17th among all models;
Figures 3A and 4C). All other partial models were per-
forming differently at low and high attentional loads.
The partial model having only the WM component (with
ωWM) predicted choices well for the 1-D and 2-D load
conditions but showed a sharply reduced predictability
for choices in the 3-D load condition (Figure 4C). The
partial model with the adaptive exploration rate (β*)
worsened choice probability for the low-load condition
relative to the standard RL but improved predictions
for the 2-D load condition (Figure 4C). Similarly, the par-
tial model with the separate weighting of negative PEs
(ηLoss, ranked 27th; see Figure 3A) showed overall better
choice probabilities than the standard RL model (ranked
28th) but still failed predicting 12%–18% of the monkeys’
choices when used as the only nonstandard RL mecha-
nisms (Figure 4C). These results highlight that the selec-
tive forgetting of nonchosen values, which is formalized
as the decay of nonchosen features (ωRL) was the only pa-
rameter that was similarly important across all attentional

load conditions. All other cognitive learning mechanisms
had functional roles that varied with attentional load.

To understand why WM was only beneficial at low and
medium attentional loads but detrimental at high atten-
tional loads, we visualized the choice probabilities that
the WM module of the full model generated for different
objects. We contrasted theseWM choice probabilities with
the choice probabilities for different stimuli of the RL mod-
ule and of the combinedWM+RLmodel (Figure 5A). After
a block switch, the WMmodule uploaded an object as soon
as it was rewarded and maintained that rewarded object in
memory over only a few trials. When the rewarded object
was encountered again before decaying to zero, it guided
the choice of that object beyondwhat the RLmodule would
have suggested (evident in Trial 6 in Figure 5A–C). ThisWM
contribution is beneficial when the same object instance
reoccurred within few trials, which happened more fre-
quently with low and medium attentional loads, but only
rarely during high loads. At this high-load condition, it was
the RL model component that is faithfully tracking the
choice probability of the monkey, whereas the WM repre-
sentation of recently rewarded objects is noninformative
because (1) it can only make a small contribution as the

Figure 4. Choice probabilities
of monkeys and models at three
different loads. (A) Average
choice accuracy of monkeys
(gray) and choice probabilities
of six models. The top-ranked
model (red) combines WM with
RL and selective suppression of
nonchosen values, a separate
learning gain for negative RPEs,
and adaptive exploration rates.
The base RL model (green)
only contained a softmax beta
parameter and a single learning
rate. The other models each
add a single mechanism to
this base model to isolate its
contribution to account for the
choice patterns of the monkeys.
Columns show from left to right
the results for low-, medium-,
and high-load conditions and
for their average. (B) The ratio
of monkey accuracy and model
choice probability shows that,
in all load conditions, the
top-ranked model predicts
monkey choices consistently
better than models with a single
added mechanism. (C) Average
difference of model predictions
(choice probability) and
monkeys’ choices (proportion
correct) at low to high loads for
different models. Error bars
indicate SE. Prop. = proportion;
diff. = difference.
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number of stimuli in the block is much larger than the ca-
pacity and (2) it does not remember rewarded objects long
enough to be around when the objects are presented an-
other time.

Although the WM contribution declined with load, the
ability to flexibly adjust exploration rates became more
important with high load as is evidenced by improved
choice probabilities at high loads (Figure 4C). This
flexible meta-learning parameter used the trace of recent
errors to increase exploration (reflected in lower beta
parameter values). Such increases in exploration facilitate
disengaging from previously relevant targets after the first
errors after the block switch, even when there are no
other competitive features in terms of value, because
the mechanism enhances exploring objects with

previously nonchosen features. Our results suggest that
such an adjustment of exploration can reduce the decline
in performance at high attentional loads (Figure 4C), that
is, when subjects have to balance exploring the increased
number of features with acting based on already gained
target information (Figure 5D and E).

The Relative Contribution of Model Mechanisms
for Learning (Exploration) and Plateau
Performance (Exploitation)

The relative contributions of individual model mechanisms
for different attentional loads can be inferred from their
load-specific parameter values that best predicted mon-
keys’ learning when fitted to the learning performance

Figure 5. Contribution of WM,
RL, and adaptive exploration to
learning behavior. (A) Choice
probabilities of the RL
component of the top-ranked
model for an example block,
calculated for the objects with
the new target feature (blue),
the previous block’s target
feature (red), and other target
features (yellow). Purple plus
signs show which object was
chosen. (B) Same format and
same example block as in A
but for choice probabilities
calculated for objects within
the WM module of the model.
Choice probabilities of the
WM and RL components are
integrated to reach a final
behavioral choice. (C) Same
as A and B but after combining
the WM and RL components in
the full model. Choices closely
follow the RL component, but
when the WM representation
is recently updated, its high
choice probabilities influence
the combined, final choice
probability, as evident in Trials 6
and 7 in this example block.
(D) The trace of nonrewarded
(error) trials for three example
blocks with low, medium, and
high load peaks immediately
after the block switch and then
declines for all conditions. Error
traces remain nonzero for the
medium and high conditions.
(E) The same example blocks as
in D. The adaptive exploration
rate ( y axis) is higher (lower
beta values) when the error
trace is high during early trials
in a block. Probab. = probability;
Med. = medium.
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at each load separately (Figure 6). WM was maintained
longer for learning at 2-D and 3-D than for 1-D load
(lowerωWM values for 2-D and 3-D, Figure 6C), but showed
lower WM capacity relative to the number of active
features (CWM, Figure 6B) at 2-D and 3-D signifying that
WM representations stopped contributing to learning at
these loads. When attentional load increased, the models
showed a gradual decrease of the weighting of positive
PEs (ηGain from ∼0.2 to 0.1) and of the weighting of
negative PEs (ηLoss from ∼0.9 to 0.4; Figure 6E and G).
A potential explanation for the decrease in ηGain is that,
with more distracting features, more trials are needed
to determine what feature is the target, which can be
achieved with slower updating. The decay of nonchosen
feature values (ωRL) was weaker with increased load
across monkeys, indicating a longer retention of values
of nonchosen objects (Figure 6F), which reflects pro-
tecting the target value when it is not part of the currently
chosen (but unrewarded) object—an event that occurs
more often at high loads. Adaptive exploration rates
(βm) increased on average from low to medium and high
loads (more negative values) signifying increased explo-
ration after errors at these higher attentional loads.
The parameter variations at increasing load could relate

to either the learning speed or the plateau performance
differences at different loads. To quantify their relative
contributions, we used LME modeling to quantify how a

model-independent estimate of learning speed (number
of trials to reach criterion performance) and plateau
accuracy (proportion of correct trials after learning crite-
rion was reached) was predicted by the model parame-
ters of the best-fit model. We found learning speed was
significantly predicted by three parameters (Figure 7A).
Learning occurred significantly earlier (i) with larger PE
weighting for rewarded trials (ηGain, t stat = −3.39, p =
.0096, FDR controlled at alpha = .05), with higher PE
weight for unrewarded trials (ηLoss, t stat = −4.66, p =
.0016, FDR controlled at alpha = .05), and (iii) with larger
adaptive change of exploration as captured in the meta-
learning parameter βm (t stat = −5.78, p = .00041,
FDR controlled at alpha = .05; for scatterplot overviews,
see Figure 7C). The remaining parameters were not
significantly predicting learning when the FDR was con-
trolled at an alpha of .05 (all not significant: βWM: t =
−2.11, CWM: t = 0.33, ωWM: t = −2.7, ωRL: t = 0.41, α+:
t = 1.84).

In contrast to the learning speed, the plateau perfor-
mance level was not significantly predicted by a single
parameter when controlling for the FDR at an alpha of
.05 (βWM: t stat = 0.97, CWM: t stat = −2.99, ωWM: t =
−0.11, βm: t stat = −1.06, ωRL: t = 2.32, ηGain: t stat =
−0.33, ηLoss: t stat = −1.34, α+: t = 0.24). With a more
lenient FDR of alpha = .2, the plateau performance
was significantly predicted by parameter values of WM

Figure 6. Model parameter values at different attentional loads. The average parameter values (black) of the top-ranked model ( y axis) plotted
against the number of distracting feature dimensions for the WM parameters (A–C) and the RL parameters (D–H). Individual monkeys are in colors.
Error bars indicate SE.
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capacity (CWM) and selective decay of nonchosen
values (ωRL; Figure 7B and D). These results indicate a
trend for better performance with less reliance on WM,
but with a stronger selective forgetting (decay) of values
for features that were not part of chosen objects (modu-
lated via ωRL). Please note that Figure 7D and 7E also
shows the correlation coefficients and the uncorrected
p-value of the correlation that does not take into account
the random effects variables that the linear mixed effects
model results accounts for.

Model Parameter Values Distinguish Fast and
Slow Learners

We next tested which model parameters distinguished
good and bad learners across attentional load conditions

by sorting subjects according to their learning speed,
that is, their average number of trials to reach criterion,
and predicting the rank order of fast to slow learners
based on the parameter values of the best-fitting model
(Figure 8A). We found that the variations of five model
parameters had a significant main effect of the LME
model (Figure 8B). Faster learners, requiring fewer trials
to learn, retained a higher WM capacity (CWM: t = −3.12,
p = .0124; Figure 8C), a lower average exploration rate
(βm: t = −5.33, p = .0005; Figure 8D), a larger learning
rate for positive outcomes (ηGain: t stat = −3.06, p =
.0137; Figure 8E), a larger learning rate for negative out-
comes (ηLoss: t stat = −4.08, p = .0028; Figure 8F), and a
larger variation (i.e., a larger amplitude of changes) of ex-
ploration rates (α+: t stat = −3.6, p = .0137; Figure 8G).
These findings illustrate that good and bad learners are

Figure 7. Model parameter values underlying learning speed and plateau performance levels. (A) The t values of the linear effects analysis for each
parameter value of the best-fitting model for predicting the average trials-to-criterion (learning speed). Stars denote FDR-corrected significance at
p < .05. Negative values denote that higher parameter values associate with faster learning. (B) Same format as A for the LME model predicting
plateau performance accuracy with model parameter values. (C, D) Scatterplots of the RL parameter values of the top-ranked model plotted against
the average learning speed (C) and the average plateau performance (D). The gray line is the linear regression whose r and p values are given above
each plot. Each dot is the average result from one monkey in either the 1-D (red), 2-D (blue), or 3-D (green) condition. Val = value.
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distinguished not by differences of a single learning
mechanism but by applying a learning strategy that uti-
lizes WM, flexibly adapts exploration rates, and shows
enhanced learning rates for both correct and error out-
comes (Figure 8).

DISCUSSION

We found that learning feature values under increasing
attentional load are accounted for by an RL framework
that incorporates four nonstandard RL mechanisms: (i)
a value-decrementing mechanism that selectively reduces
the feature values associated with the nonchosen object,
(ii) a separate WM module that retains representations of
rewarded objects over a few trials, (iii) separate gains for
enhancing values after positive PEs and for suppressing
values after negative PEs, and (iv) a meta-learning com-
ponent that adjusts exploration levels according to an on-
going error trace. When these four mechanisms were
combined, the learning behavior of monkeys was better
accounted for than when using fewer or different sets of
mechanisms. Critically, the same set of mechanisms was
similarly important for all six animals (Figure 3), suggest-
ing they constitute a canonical set of mechanisms under-
lying flexible learning and adjustment of behavior.
Although subjects varied in how these mechanisms were
weighted (Figure 6), those with faster learning and hence
higher cognitive flexibility were distinguished by stronger
weighting of positive and negative PEs, higher WM

capacity, and an overall lower exploration rate but with
enhanced meta-adjustment rates of the exploration rate
during periods of high error rates. Taken together, these
results document a formally defined set of mechanisms
that support flexible learning of feature relevance under
variable attentional load. It is important to note that the
optimal model parameter settings do not perfectly
account for all the observed choices; for instance, the
observed learning curves in Figures 3C and 4A lie above
those generated by the models. It is therefore possible
that an additional model mechanism exists that closes
this predictive gap, which could potentially interfere
with, for instance, the interaction between WM- and
RL-based learning during varying attentional load, hence
potentially changing the suggested role of the mecha-
nisms. Further research is therefore necessary to identify
additional model mechanisms to exclude this possibility.
In addition, these suggested mechanisms serve as a
starting point for electrophysiological experiments in
which specific brain areas are targeted by perturbative
approaches to causally establish the role of model mech-
anisms in behavior. In the following, we further discuss
our results from this viewpoint, including the evaluation
of other model mechanisms we considered.

Selective Value Enhancement Is a Key Mechanism
to Cope with High Attentional Load

One key finding was that only one nonstandard RL
mechanism, the decay of values of nonchosen features

Figure 8. Model mechanisms
distinguishing slow and fast
learners. (A) The average
learning speed (the trials to
reach criterion; y axis) plotted
against the individual monkeys
ordered from the fastest to the
slowest learner. (B) t Values of
the linear effects analysis that
tested how the rank-ordering
of monkeys’ learning speeds
(Ranks 1–6) are accounted for
by model parameter values.
Stars denote FDR-corrected
significance at p < .05. (C–G)
The parameter values ( y axis)
of the best-fit model plotted
against the rank ordering
of learners (x axis). The
parameters shown had a
significant main effect to
account for the rank ordering
of learners as shown in B.
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(ωRL), contributed similarly to learning across all atten-
tional load conditions (Figure 4C). This finding high-
lights the importance of this mechanism and supports
previous studies that used a similar decay of nonchosen
features to account for learning in multidimensional
environments with deterministic or probabilistic reward
schedules (Oemisch et al., 2019; Hassani et al., 2017;
Radulescu et al., 2016; Niv et al., 2015; Wilson & Niv,
2011). The working principle of this mechanism is a
push–pull effect on the expected values of encountered
features and thus resembles a selective attention phe-
nomenon (when emphasizing the “pushing” of values)
of chosen and attended objects, or a “selective forgetting”
phenomenon (when emphasizing the “pulling” down of
values of nonchosen object features). When a feature is
chosen (or attended), its value is updated and contributes
to the next choice, whereas the value of a feature that is
not chosen (not attended) is selectively suppressed and
contributes less to the next choice. A process with a
similar effect has been described in the associability liter-
ature whereby the exposure to stimuli without directed
attention to it causes a reduction in effective salience of
that stimulus. Such reduced effective salience reduces
its associability and can cause the latent inhibition of
nonchosen stimulus features for learning (Esber &
Haselgrove, 2011; Donegan, 1981; Hall & Pearce, 1979)
or the slowing of responses to those stimuli (also called
negative priming; Lavie & Fox, 2000). The effect is consis-
tent with a plasticity process that selectively tags synapses
of those neuronal connections that represent chosen
objects to enable their plasticity while preventing (or
disabling) plasticity of nontagged synapses processing
nonchosen objects (Roelfsema & Holtmaat, 2018;
Rombouts et al., 2015). In computational models, such a
synaptic tag is activated by feedback connections from
motor circuits that carry information about what subjects
looked at or manually chose (Rombouts et al., 2015).
Accordingly, only chosen objects are updated, resembling
how ωRL implements increasing values for chosen objects
when rewarded and the passive decay of values of non-
chosen objects. At low attentional loads, high ωRL values
reflect the fast forgetting of nonchosen stimuli, whereas at
high attentional loads, ωRL adjusted to lower values, which
is slowing down the forgetting of values associated with
nonchosen objects (Figure 5F). The lowering of the ωRL

decay at high loads implies that values of all stimulus
features are retained in the form of an implicit choice-
history trace. Consistent with this finding, various studies
have reported that several areas in prefrontal cortex
contain neurons representing values of unchosen objects
and unattended features of objects (Westendorff, Kaping,
Everling, & Womelsdorf, 2016; Boorman, Behrens,
Woolrich, & Rushworth, 2009). Our results demonstrate
that, at high attentional loads, the ability of subjects to
retain the value history of those nonchosen stimulus
features is a critical factor for fast learning and good per-
formance levels (Figure 7A).

WM Supports Learning Together with RL

Our study provides empirical evidence that learning the
relevance of visual features leverages a fast WM mecha-
nism in parallel with a slower RL of values. This finding
empirically documents the existence of parallel (WM
and RL) choice systems, each contributing to the mon-
key’s choice in individual trials to optimize outcomes.
The existence of such parallel choice and learning sys-
tems for learning fast and slow has a long history in the
decision-making literature (Balleine, 2019; van der Meer,
Kurth-Nelson, & Redish, 2012; Poldrack & Packard,
2003). For example, WM has been considered to be the
key component for a rule-based learning system that uses
a memory of recent rewards to decide to stay with or
switch response strategies (Worthy, Otto, & Maddox,
2012). A separate learning system is associative and
implicitly integrates experiences over longer periods
(Poldrack & Packard, 2003), which in our model corre-
sponds to the RL module.
The WM mechanisms we adopted for the feature

learning task are similar to WM mechanisms that con-
tributed in previous studies to the learning of strategies
of a matching pennies game (Seo, Cai, Donahue, & Lee,
2014), the learning of hierarchical task structures
(Alexander & Brown, 2015; Collins & Frank, 2012,
2013), or the flexible learning of reward locations
(Viejo et al., 2018; Viejo et al., 2015). Our study adds
to these prior studies by documenting that the benefit
of WM is restricted to tasks with low and medium atten-
tional loads (Figure 4). The failure of WM to contribute
to learning at higher loads likely reflects an inherent
limit in WM capacity. Beyond an interpretation that
WM capacity limits are reached at higher loads, WM is
functionally predominantly used to facilitate processing
of actively processed items as opposed to inhibiting the
processing of items stored in WM (Noonan, Crittenden,
Jensen, & Stokes, 2018). In other words, a useful WM
is rarely filled with distracting, nonrelevant information
that a subject avoids. In our task, high distractor load
would thus overwhelm the WM store with information
about nonrewarded objects whose active use would
not lead to reward. Consequently, the model—and
the subject whose choices the model predicts—
downregulated the importance of WM at high atten-
tional loads, relying instead on a slower RL mechanism
to cope with the task.

Separate Learning Rates Promote Avoiding
Choosing Objects Resulting in
Worse-Than-Expected Outcomes

We found that separating learning from positive and neg-
ative PEs improved model predictions of learning across
attentional loads (Figure 4) by using considerably larger
learning rates for negative than positive outcomes
(Figure 6E vs. 6G). Thus, monkeys were biased to learn
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faster to avoid objects with worse-than-expected feature
values than to stay with choosing objects with better-
than-expected feature values. A related finding is the ob-
servation of larger learning rates for losses than gains for
monkeys performing a simpler object–reward association
task (Taswell et al., 2018). In our task, such a stronger
weighting of erroneous outcomes seems particularly
adaptive because the trial outcomes were deterministic,
rather than probabilistic, and thus a lack of reward pro-
vided certain information that the chosen features were
part of the distracting feature set. Experiencing an omis-
sion of reward can therefore immediately inform subjects
that feature values of the chosen object should be sup-
pressed as much as possible to avoid choosing it again.
This interpretation is consistent with recent computa-
tional insights that the main effect of having separate
learning rates for positive and negative outcomes is to
maximize the contrast between available values for opti-
mized future choices (Cazé & van der Meer, 2013).
According to this rationale, larger learning rates for
negative outcomes in our task promote the switching
away from choosing objects with similar features again
in the future. We should note that, in studies with uncer-
tain (probabilistic) reward associations that cause low
reward rates, the overweighting of negative outcomes
would be nonadaptive as it would promote frequent
switching of choices, which is suboptimal in these
probabilistic environments (Cazé & van der Meer,
2013). These considerations can also explain why
multiple prior studies with probabilistic reward schedules
report an overweighting of positive over negative PEs,
which in their tasks promoted staying with and prevent
switching from recent choices (Lefebvre et al., 2017;
van den Bos et al., 2012; Kahnt et al., 2009; Frank
et al., 2004, 2007).
The separation of two learning rates also demonstrates

that our task involves two distinct learning systems for
updating values after experiencing nonrewarded and re-
warded choice outcomes. Neurobiologically, this finding
is consistent with studies of lesioned macaques reporting
that learning from aversive outcomes is more rapid than
learning from positive outcomes and that this rapid
learning is realized by fast learning rates in the amygdala
as opposed to slower learning rates for better-than-
expected outcomes that are closely associated with the
ventral striatum (Taswell et al., 2018; Averbeck, 2017;
Namburi et al., 2015). Our finding of considerably higher
(faster) learning rates for negative than positive PEs is
consistent with this view of a fast versus slow RL updating
system in the amygdala and the ventral striatum, respec-
tively. The importance of these learning systems for
cognitive flexibility is evident by acknowledging that
learning rates from both, positive and negative out-
comes, distinguished good and bad learners (Figure 8),
which supports reports that better and worse learning
human subjects differ prominently in their strength of
PE updating signals (Krugel, Biele, Mohr, Li, & Heekeren,

2009; Klein et al., 2007; Schönberg, Daw, Joel, &
O’Doherty, 2007).

Adaptive Exploration Contributes to Learning at
High Attentional Load

We found that adaptive increases of exploration during
the learning period contributed to improved learning at
high loads (Figure 3). Adapting the rate of exploration
over exploitation reflects a meta-learning strategy that
changes the learning process itself by adaptively enhanc-
ing searching for new choice options irrespective of
already-acquired expected values (Doya, 2002). Our find-
ing critically extends insights that adaptive learning rates
are critically important to cope with uncertain environ-
ments (Soltani & Izquierdo, 2019; Farashahi, Donahue,
et al., 2017) to target uncertainty imposed by increased
distractor load. In earlier studies, reward uncertainty
was estimated to adjust learning rates in tasks with vary-
ing volatility (Farashahi, Donahue, et al., 2017), changing
outcome probabilities when predicting sequences of
numbers (Nassar, Wilson, Heasly, & Gold, 2010), sharp
transitions of exploratory search for reward rules and
exploitation of those rules (Khamassi et al., 2015), prob-
abilistic reward schedules during reversal learning (Krugel
et al., 2009), or the compensation for error in multijoint
motor learning (Schweighofer & Arbib, 1998). A com-
monality of these prior meta-learning studies is a rela-
tively high level of uncertainty about the source of reward
or error outcomes. In our task, the uncertainty about the
target feature systematically increased with the number
of distracting features. As a consequence of enhanced
uncertainty, subjects utilized a learning mechanism that
increased randomly exploring new choice options when
nonrewarded choices accumulated and to reduce explor-
ing alternative choices when choices began to lead to
reward outcomes. Such balancing of exploration and
exploitation can be achieved by using a memory of recent
reward history to adjust undirected vigilance (Khamassi
et al., 2013; Dehaene, Kerszberg, & Changeux, 1998) or
other forms of exploratory strategies (Tomov et al., 2020).

Limitations and Scope of Our Findings

Our study found that four nonstandard learning mecha-
nisms contributed to explaining learning at low and high
attentional loads across six monkeys. This is a major
novel finding that motivates identifying the neural basis
of each of these mechanisms and how they cooperate
during learning. However, these results should not be
considered a conclusive list of learning mechanisms,
and various limitations of our approach should be consid-
ered. First, we cannot rule out that other mechanisms are
used beyond those considered (see next subsection).
Second, our conclusions are based on ranking different
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models according to how well (in terms of likelihood)
they predict choices. We quantified this for each of six
monkeys separately with the BIC, which is well estab-
lished and penalizes the model predictability by the num-
ber of parameters used for the prediction (Wagenmakers
& Farrell, 2004). We could have chosen other means to
rank order models by, for example, combining the BIC
with measures of explained variance of choices (pseudo
R2) into a compound goodness-of-fit score (Balcarras
et al., 2016) or performing a model recovery analysis
using all possible models (Wilson & Collins, 2019).
Such more extensive model comparisons will be justified
when a study considers multiple alternative, mutually
exclusive, and possibly more contentious, newly devised
learning mechanisms that do not apparently contribute
to enhancing likelihood in terms of BIC. Here, we
documented, as reported in the Methods section, that
the models used were identifiable to a sufficient degree
so that the different parameters could be compared and
that the models yielded significant differences in the
objective function so that the performance of the models
could be adequately compared (Appendix).

Consideration of Alternative Mechanisms

In our study, only two main mechanisms were tested that
were not consistently contributing to enhancing the BIC
(choice stickiness and Bayesian dimension weighting).
These two processes might play a role in other tasks that
we did not consider. Our study should therefore not be
considered to exclude learning mechanisms but rather to
provide strong positive empirical evidence for including
those four mechanisms that we found to consistently
contribute to successful cognitive flexibility in our task.

Beyond the mechanisms that we tested explicitly in
our study, we explored alternative models that have been
described in the literature and that we found not to be
competitive for our data set. These models were almost
exclusively formulated in terms of values, either of the
object or feature. One of the omitted models was object-
based RL learning (not to be confused with object-based
WM, which represented fast, one-shot learning). For our
data, this model did not yield competitive accounts for
the choices. It is important to mention this model because
it relates to the investigation in Farashahi, Rowe, et al.
(2017), which compares feature with object-based proba-
bilistic RL learning.

A second set of models we did not explicitly consider
in this report but tested on the data set are models that
assume learning involves subjects to test hypotheses of
reward rules causing fast and discrete switches of atten-
tion and behavioral choices when a hypothesis is refuted.
For example, some studies report that the identification
of the correct target occurs suddenly during the block
and from then on results in choices that are rewarded
(Papachristos & Gallistel, 2006). From block to block, this

sudden onset occurs at different trials relative to the tar-
get switch so averaging accuracy across blocks can give
the wrong impression of a smooth learning curve. The
rapid switching is consistent with the subject holding a
single hypothesis at a time about what the target feature
is and switching when the choices based on this hypoth-
esis are not rewarded. Such a model is referred to as a
serial hypothesis-testing model as suggested by Niv and
colleagues (Radulescu, 2020; Radulescu, Niv, & Ballard,
2019). We implemented a version of this model, explored
the learning behavior in the generative version of the
model, and fitted it to a subset of behavioral data using
the likelihood formulation of the model (see Appendix,
Appendix Figure A2). On each trial, there is a single in-
ferred target feature, and a switch to a new (randomly
chosen) feature is made when the number of rewards
in the prior τ trials is below a certain threshold (this is
a parameter in themodel). At the phenomenological level,
the model reproduces the decrease in learning speed
with higher attentional load (Appendix Figure A2D–F and
Appendix Figure A3B–D for Attentional Loads 1, 2 and 3,
respectively). For our fits, we varied the memory duration
τ and found that a memory of three trials in the past was
optimal; nevertheless, the resulting performance (NLL)
did not match our best model (Model 1; Table 1). We ex-
pect that the model will be interesting for future studies in
which probabilistic rewards are considered for which
memory should help in distinguishing between unre-
warded correct choices and unrewarded incorrect
choices for switching to a new hypothesis.
Amore complicated version of the hypothesis switching

approach is based on change-point detection (Adams &
MacKay, 2007), in the sense that more probability distribu-
tions need to be updated from trial to trial (hence be rep-
resented somewhere in the brain if the model has to have
a mechanistic interpretation). A Bayesian inference model
with change-point detection was described in Wilson and
Niv (2011, Section 2.3.2). In this model, the key quantity is
the probability pf that feature f is the target. This distribu-
tion converges quickly toward a situation in which all the
probability weight is on one feature, in essence repre-
senting that the subject has a single hypothesis for the
target feature. A change point indicates that the current
hypothesis does not predict rewarded choices anymore,
in which case pf has to be reset, typically to a uniform
distribution. The model builds, based on the stimulus–
choice–reward sequence, a probability distribution of
the possible change points and maintains the corre-
sponding feature distribution pf conditioned on each
possible change point in the past. We had earlier sim-
ulated a Bayesian inference model without change-
point detection, which led to noncompetitive values for
NLL, because it learned too fast compared to the subject
(note that we had a deterministic reward rule). We had in-
cluded this model, for example, in Oemisch et al. (2019).
Similarly, the model with change-point detection also had
a higher NLL than our best model, and the optimal fit
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parameters corresponded to an unreasonably high switch
rate h. Hence, we did not enter these types of models in
our comparison.
An alternative to value-based learning is Q-learning in

which for each state s of the environment and inferred
feature f, an action value Q(c, f, s) for choice (action) c
is learned from the past choices and rewards. An example
of such a model, relevant to our data, was proposed in
Kour and Morris (2019). An additional advantage was that
this model was fit by an expectation–maximization proce-
dure (i.e., Baum–Welch method; see Murphy, 2012)
because that procedure provides a way to reconstruct
the hypothesis on each trial. We however found that the
sheer number of parameters represented by the Q values
(which grow with the product of the number of states
times the number of features times the number of objects,
which in our case is 36 × 3 × 3, 216 × 6 × 3, and 1296 ×
9 × 3 for one, two, and three nonneutral features, respec-
tively) made fitting difficult for the number of blocks that
we had experimentally available.
In other published models, the specific target of updates

for unchosen features is a free parameter (Ito &Doya, 2009;
Barraclough, Conroy, & Lee, 2004). Thesemodels are based
on Q-learning hence suffer in our case from the aforemen-
tioned issue of a large number of parameters necessary for
the action values. This was not the case in the cited refer-
ences because there was only one state in combination
with two possible choices (L and R) that each has a different
reward probability associated with it. A direct comparison
based on our data was therefore not feasible. Nevertheless,
Ito and Doya (2009) discuss four different update rules,
which determine how the action values of chosen and
nonchosen options are updated when there was a reward
or when the reward was omitted. These update choices
play similar roles as our learning rate parameters ηLoss
and ηGain play for the update of the chosen option when
not rewarded/rewarded, respectively, and ωRL

nc for the
decay of the nonchosen option. In conclusion, our evalu-
atedmodels are similar in spirit to the ones in Ito andDoya
(2009); however, rather than based on action values for
choices, we update feature values with similar alternative
update models.
Other published models incorporated longer-timescale

perseveration to account for choice behavior (Miller,
Shenhav, & Ludvig, 2019; Akaishi, Umeda, Nagase, &
Sakai, 2014). For example, the task in Akaishi et al.
(2014) involved two choices, but models for this choice
were formulated solely in terms of the probability of
making the first choice, which is obtained by transform-
ing a decision variable by a sigmoid. Different choices for
functional dependence of the decision variable on past
choices and current and past stimulus features were
made. For instance, it could depend on the prior choice,
the current and previous contrast, sometimes in a non-
linear combination, where the previous contrast gain
modulated the effect of the current contrast. We have
incorporated the choice stickiness of the previous choice

in a similar fashion (following Balcarras et al., 2016) but
found that, for the current task, stickiness on average
did not improve the prediction of choices and was not part
of the top-rankedmodel in five of sixmonkeys (Figure 3A).
Akaishi and colleagues also evaluated replacing variables
by predictions for the stimulus contrast and choice
(Akaishi et al., 2014). These predictions were updated
using the PE similar to the feature values in our RLmodels,
hence this mimics Q-learning. Apart from the fact we did
not have a contrast variable in the current behavioral data,
we did not include such prediction variables in our
models, primarily because choices depend on the stimu-
lus configuration, hence we would have to consider a
different set of action variables for each stimulus config-
uration, again yielding the aforementioned state-space
size problems.

Taken together, our brief discussion of previous work
covers models that either we implemented in a pilot
stage but found not to account well for the choices in
our task or were a different type of model that was based
on action value formulation that was feasible in the original
works, but not for our behavioral data. The latter incor-
porated effects of perseveration and different reward-
dependent gains and choice-dependent decay that we
had already incorporated in our feature value updates
and evaluated as part of our set of models. Taken together,
we believe that our comparison covered a sufficiently
diverse set of models to draw conclusions about how
behavioral strategies change with attentional load. When
the task is extended to include probabilistic rewards as
well as multistage setups, then action-value-based models
may need to be used instead of the feature-value-based
models we focused on here.

Conclusion

In summary, our study documents that a standard RL
modeling approach does not capture the cognitive pro-
cesses needed to solve feature-based learning. By formal-
izing the subcomponent processes needed to augment
standard (Rescorla–Wagner) RL modeling, we provide
strong empirical evidence for the recently proposed
“EF-RL” framework that describes how executive func-
tions (EF) augment RL mechanism during cognitive tasks
(Rmus, McDougle, & Collins, 2020). The framework as-
serts that RL mechanisms are central for learning a policy
to address task challenges but that attention-, action-, and
higher-order expectations are integral for shaping these
policies (Rmus et al., 2020). In our study, these “EF”
functions included (i) WM, (ii) adaptive exploration,
(iii) a separate learning gain for erroneous performance,
and (iv) an attentional mechanism for forgetting noncho-
sen values. As outlined in Figure 9, these mechanisms
leverage distinct learning signals, updating values based
directly on outcomes (WM), on PEs (RL-based decay
of nonchosen values), or on a continuous error history
trace (meta-learning-based adaptive exploration). As a
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consequence, these three learning mechanisms operate
in parallel and influence choices to variable degrees
across different load conditions, for instance, learning fast
versus slow (WM vs. meta-learning vs. RL) and adapting
optimally to low versus high attentional load (WM vs. meta-
learning). Our study documents that these mechanisms
operate in parallel when monkeys learn the relevance of
features of multidimensional objects, providing a
starting point to identify how diverse neural systems
integrate these mechanisms during cognitive flexible
behavior (Womelsdorf & Everling, 2015).

APPENDIX

Identifiability of Model 1

We evaluated to what extent the fitting of Model 1
(Table 1) was affected by local minima by starting the fit-
ting procedure from different initial conditions (n = 10).
We found that a number of distinct parameter sets were
reached multiple times. The objective function, NLL,
was different for these solutions, but the differences were
small and typically less than the difference between dif-
ferent models considered here. For each of the initial
conditions, we generated 40 behavioral sequences and
determined the NLL, reward outcome, and match be-
tween subject and model choices (Appendix Figure A1A
and B). Here, the match was quantified as the fraction of
common choices. The overall conclusion is that the bet-
ter the NLL (i.e., a lower value), the more overlap there
was between the choices of the model and those of the
subject; this was, in addition, indexed as a higher average
reward. We also refitted these sequences and analyzed the
variability in parameter values so obtained, represented
as boxplots in Appendix Figure A1C. We found that the
variability in the β parameters for both the WM and RL
components was high, which was reflected in the nega-
tive correlation between them (Appendix Figure A1E). In
addition, there was a strong anticorrelation between βWM

and CWM (Appendix Figure A1D). This suggests that outlier
values of the β variables should be removed. This can be
achieved by putting priors on the parameters and incorpo-
rating those in the objective function or using a cross-
validation strategy to extract the robust parameter sets.

Serial Hypothesis-Testing Models

Generative Model

The state of the subject is described by a latent variable z;
in our case, this is the current hypothesis about what the
target feature f is. There are multiple dimensions d; within
each dimension, there are multiple feature values fd, the
number of which varies with dimension. For instance,
for the dimension “color,” there are feature values “red”
and “green,” whereas for the dimension “shape,” there
are a different number of features. Each dimension has a
neutral feature value that can appear in multiple objects,
when the corresponding dimension cannot provide the
target feature that predicts reward. The key variable is
the target feature ft during trial t, determined by the envi-
ronment, and the set of features that are active, fa; that is,
they are all the nonneutral features that are presented dur-
ing a block of trials and that can be the target feature. We
use functions to switch between dimension d (color), fea-
ture value within dimension fd (red), and overall feature
value f (index for color–red), specifically D( f ) = df, Fd
( f ) = fd, f = F(d, fd); these are easily implemented as a
lookup in the appropriate matrix. The primary reason is
that, unless you use attention to a particular dimension,
the overall feature value can be used as the main variable
in updates, and then, it also represents the values z can take.
The state is an allowed combination of no objects, and

the objects can share the same feature value for a dimen-
sion when it is the neutral value, but they have to have
different ones for nonneutral features. The state of the
environment is summarized by the matrix S(i, j, s), here
i = 1, …, no indicates the object, j = 1, …, nf indicates
the feature, and s = 1, …, ns indicates the state index.
When in trial t the state of the environment is st, it means
that the objects are given in terms of their features by S(i,
j, st), that is, S(i, j, st) = 1 when object i in state st contains
feature j. Taken together, this means that the environ-
ment can be completely described by state st (ns = 36,
216, or 1296, respectively, for one, two, or three active
dimensions with three nonneutral features used in each
dimension) and the current target feature ft (taking
values between 1 and nf = 3, 6 and 9, respectively, for
the aforementioned attentional loads). In our setup, each
st is chosen randomly from among the ns available states,

Figure 9. Characteristics of the
WM, RL, and meta-learning
components. The model
components differ in the
teaching signals that trigger
adjustment (top row), in the
learning speed, that is, in how
fast they affect behavior (center
row) and in how important they
are to contribute to learning
at increasing attentional load
(bottom row). Att. = attention;
Reinf. = reinforcement;
Pos = positive.
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where ft switches randomly from trial to trial from feature
j to i, according to the switching matrix

pswfij ¼ 1− hð Þδij þ h
nf − 1

1− δij
� �

;

where δij is the Kronecker delta, equal to 1 when i = j
and zero otherwise. Hence, there is a probability h for
a switch to a random other feature. The potential value
(possible reward) of each state is the same, hence the
subject cannot change future values of a state by a
particular choice. This makes this system different from
the typical one studied using Q-learning.
The additional variables on each trial are subject-

inferred target zt, choice ct, and the resulting reward rt.
The choice ct is for the object that contains the inferred
target, hence, for which S(ct, zt, st) = 1, with probability
pc (exploitation) and with 1 − pc, a random choice is
made (exploration). This parameter, in some sense, plays
the role of the β in the softmax choice probability of our
feature value models (Table 1). The probability for

obtaining a reward on trial t, rt = 1, is pr when the choice
contains the target, that is, S(ct, ft, st) = 1, and pnr,
otherwise.

In the experimental study, we used a deterministic re-
ward scheme, pr = 1 and pnr = 0. Taken together, using
x = S(ct, ft, st) as shorthand, then the probability for re-
ward on trial t is p = prx + pnr(1 − x). Note that ct and rt
can only influence the future inferred target zt+1.

The probability for the new inferred target being zt+1 =
i when zt = j is determined by the following switching
matrix

pswzij ¼ 1− hzt
� �

δij þ hzt
nf − 1

1− δij
� �

;

with the switch probability

hzt ¼ 1−
1

1þ e−κ �rt−θð Þ :

Note that the sigmoid in this expression in fact repre-
sents a stay probability, but we need to enter the switch

Appendix Figure A1. Model 1 identifiability. The experimental behavioral data were fitted 10 times starting from different initial conditions for the
parameters. For each of the fit parameters, the generative model was run 40 times, which yielded 400 values for the NLL, the average reward, and the
match between subject choices. The models were refitted, which yielded 400 parameter sets. (A) Reward outcome versus NLL: A lower (better) NLL
also gives a higher average reward. (B) Match between model and subject choices versus NLL. Each model choice sequence was represented by a
line; the bottom point is the match for randomized model choices, whereas the top point is that for the actual model choices. The lower the NLL, the
better the prediction of choices by the model is. (C) Boxplot summarizing the 400 values of each parameter; the red line indicates the median, the
box contains the interquartile range (25th–75th percentile), and the points beyond the whiskers are outliers. For βWM and βm, there are a significant
number of outliers. The variables (D) βWM and CWM and (E) βWM and βm are negatively correlated.
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probability in the switch matrix, hence the subtraction
from one in the formula. The �rt is the weighted average
of rewards across the past τ trials, �rt =

Pτ−1
i¼0 wirt−i; here,

we explored two choices: wi = 2τ–i−1 or wi = 1. Hence,
either the more recent reward counts more or all past
rewards are counted equally.

The algorithm to create the behavioral model data
therefore has the following steps:

• Initialize: Set z1, f1, and s1 (drawn uniformly from
among all feasible values).

• Make choice ct: Choose whether to exploit (probability
pc) or explore (1 − pc); for the former, choose the ct
that satisfies S(ct, zt, st) = 1, whereas for the latter,
choose ct according to the uniform distribution.

• Determine reward rt: Set rt = 1 with probability p =
prx + pnr(1 − x), x = S(ct, ft, st).

• Update inferred target zt: Draw zt+1 = i according to
pswzi;zt using

hzt ¼ 1−
1

1− e−κ �rt−θð Þ :

• Update target feature ft: Draw ft+1 = i according to
pswfi; ft

.
• Update state (objects) st: Draw st+1 uniformly from

among the allowed states.

The parameters are exploit probability pc, reward prob-
ability for correct choice pr and for incorrect choice pnr,
target switching rate h, memory duration τ, sharpness of
switch function κ, and the threshold θ.

Likelihood Model for Behavioral Observations

The generative model produces a sequence (st, ct, rt),
and the actual target ft is also available but should not
be used (because this is contained in the reward that
the subject receives), whereas latent variable zt is hidden.
During the fitting procedure, we fixed pr and pnr, al-
though in principle, the subject may not know them,
and we assumed a deterministic choice pc = 1. In addi-
tion, the allowed states according to which the sequence
was generated are also given; this means a fixed atten-
tional load is assumed and provided. Hence, the free

Appendix Figure A2. Behavioral data for a serial hypotheses-testing model with pr = 0.99, pnr = 0, pc = 1, and h = 0.01, with recent rewards more
heavily weighted in the switching function. (A) There are ns = 36 different states, which are randomly sampled across trials. (B) The target feature ft is
generated from a random switching process with hazard rate h = 0.01; the target feature zt is inferred by the model based on previous observations
of choices and reward. (C) The choice as a function of trial index: Rewarded choices are in red; and the unrewarded, in blue. These examples are
generated for τ = 3, κ = 5.71, θ = 1.75, and Attentional Load 1. (D–F) Choice accuracy curves for attentional load equal to (D) 1, (E) 2, and (F) 3, for
five different values of τ = 1, …, 5 as indicated in the legend. The corresponding (κ, θ) values are (40, 0.25), (13.33, 0.75), (5.71, 1.75), (2.67, 3.75),
and (1.3, 7.75). Higher attentional load leads to slower learning and lower asymptotic choice accuracy. For these settings, there is little advantage of a
longer memory (τ); for Attentional Load 1, longer τ prolongs the learning period.
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parameters are κ and θ, which can be optimized for a rel-
evant range of memory durations τ. We start the proce-
dure by setting the inferred target to a specific value zt.
Then, on the basis of the reward history, a switch prob-
ability hzt and the resulting switch vector pi;zt (given by
pswzi;zt , i runs along allowed feature values) are formed.
The vector S(ct+1, i, st+1) indicates which features were
present in the chosen object on the next trial, hence the
product of the switching probability to i and whether the
choice contained i measure how well the new inferred
target predicts the choice. We choose as log likelihood
LL = log(�i S(ct+1, i, st+1)pi;zt ) and add these across trials.
We also need to update the inferred target; we choose
the zt+1 = i where i maximizes S(ct+1, i, st+1)pi;zt . This
procedure recovers the correct parameters when fed
the model-generated choice–state–reward sequence.
To fit the experimental data, which contain blocks with

varying attentional loads, we add a running average

across presented features to construct the correct set
of active feature values fa for the switching functions.

Serial Hypothesis Testing Based Update with
Feature-specific Switching

The preceding model switched when there were too
many unrewarded trials in its past, but it did not use that
information to switch to a specific feature. In a different
version of the model, the inferred target τ trials back was
used as the initial condition for a Bayesian update that
integrated the choice–state–reward sequence up to and

including the current trial. Specifically, set pfi = δi;zt−τ +
0.01, for i= 1,…, nf, as starting point of the iteration. We
add a small nonzero probability for all other features, be-
cause otherwise, with the multiplicative updates used
here, there can never appear any nonzero probabilities
for other features than the starting one. The update for

Appendix Figure A3. Behavioral data for a serial hypotheses-testing model with feature-based switching, pr = 0.99, pnr = 0, pc = 1, and h = 0.01.
(A) The target feature ft is generated from a random switching process with hazard rate h = 0.01; the target feature zt is inferred by the model based
on previous observations of choices and reward. These data are for τ = 3 and Attentional Load 1. (B–D) Choice accuracy curves when the attentional
load is (B) 1, (C) 2, and (D) 3, for five different values of τ= 1, 2,…, 9 as indicated in the legend. Higher attentional load leads to slower learning and
lower asymptotic choice accuracy. Longer τ prolongs the learning period.
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each trial is, using temporary variables x, y, and u for ease
of presentation, and v as temporary trial index: xi = δi;cv
and yij = S(i, j, sv), for i = 1, …, no, and j = 1, …, nf,
whereas uj = �i[pr xiyij + pnr(1 − xi)(1 − yij)]. The

update then becomes pfj = [rvuj + (1 − rv)(1 − uj)]p
f
j ,

which is applied starting from the p f for t − τ (i.e., with
peak at the inferred target), for v = t – τ + 1 up to t. The
resulting p f is then normalized into a probability
distribution. The zt+1 is then drawn randomly according to
this distribution p f. The only change compared to the
generative algorithm presented before is in this update of
the internal variable.

The likelihood model is changed along similar lines. In
that case, the choice and reward are given, hence we

need to consider S(i, ct+1, st+1)p
f
i , which measures the

likelihood that the choice is made according to the
updated p f, which integrates the past τ trials. The new
inferred target zt+1 is given by the feature i that maxi-
mizes this likelihood. The contribution to the objective
function for trial t + 1 is given by the log likelihood

LL = log[�i S(ct+1, i, st+1)p
f
i ].

Examples

In Appendix Figure A2, we show the predictions of the
generative model with random switching between
features. A higher attentional load results in slower
learning and a lower asymptotic performance (typically
the experiment stops at 30, so asymptotic performance
means performance toward the end of the block. In
Appendix Figure A3, we show the predictions for
feature-based switching. The key feature is that integrating
over one previous trial is not enough to reach perfect
performance for even the lowest attentional load, whereas
for Load 3, none of the delays τ up to 9 is sufficient.

Acknowledgments

The authors thank Shelby Volden and Seth König for help with
animal training and data collection and Seth König for preparing
the data for analysis and for introducing the concept of a “neu-
tral” Quaddle stimulus. Research reported in this publication
was supported by the National Institute of Mental Health of
the National Institutes of Health under Award Number
R01MH123687. The content is solely the responsibility of the
authors and does not necessarily represent the official views
of the National Institutes of Health.

Reprint requests should be sent to Thilo Womelsdorf,
Department of Psychology, Vanderbilt University, 301 Wilson
Hall 111, 21st Avenue South, Nashville, TN 37240, or via e-mail:
thilo.womelsdorf@vanderbilt.edu or Paul Tiesinga, Donders
Institute for Brain, Cognition and Behaviour, Radboud
University Nijmegen, Nijmegen 6525 EN, The Netherlands, or
via e-mail: P.Tiesinga@science.ru.nl.

Data and Code Accessibility

Data and computational modeling code for reproducing
the results of the best-fitting model (Figure 4) is available

at https://github.com/att-circ-contrl/Model-WM-RL
-cooperation or from the corresponding authors.

Author Contributions

ThiloWomelsdorf: Conceptualization; Data curation; Formal
analysis; Funding acquisition; Investigation; Methodology;
Project administration; Resources; Software; Supervision;
Validation; Visualization; Writing—Original draft; Writing—
Review & editing. Marcus R. Watson: Data curation;
Software; Writing—Review & editing. Paul Tiesinga:
Conceptualization; Formal analysis; Methodology;
Resources; Software; Supervision; Validation; Visualization;
Writing—Original draft; Writing—Review & editing.

Funding Information

Thilo Womelsdorf, National Institute of Mental Health
(https://dx.doi.org/10.13039/100000025), grant number:
MH123687.

Diversity in Citation Practices

A retrospective analysis of the citations in every article pub-
lished in this journal from 2010 to 2020 has revealed a
persistent pattern of gender imbalance: Although the pro-
portions of authorship teams (categorized by estimated
gender identification of first author/last author) publishing
in the Journal of Cognitive Neuroscience ( JoCN) during
this period were M(an)/M = .408, W(oman)/M = .335,
M/W= .108, andW/W= .149, the comparable proportions
for the articles that these authorship teams cited were
M/M = .579, W/M = .243, M/W = .102, and W/W = .076
(Fulvio et al., JoCN, 33:1, pp. 3–7). Consequently, JoCN
encourages all authors to consider gender balance explicitly
when selecting which articles to cite and gives them the
opportunity to report their article’s gender citation balance.

REFERENCES

Adams, R. P., & MacKay, D. J. C. (2007). Bayesian online
changepoint detection. arXiv:0710.3742.

Akaishi, R., Umeda, K., Nagase, A., & Sakai, K. (2014).
Autonomous mechanism of internal choice estimate
underlies decision inertia. Neuron, 81, 195–206. https://doi
.org/10.1016/j.neuron.2013.10.018, PubMed: 24333055

Alexander, W. H., & Brown, J. W. (2015). Hierarchical error
representation: A computational model of anterior cingulate
and dorsolateral prefrontal cortex. Neural Computation,
27, 2354–2410. https://doi.org/10.1162/NECO_a_00779,
PubMed: 26378874

Alexander, W. H., & Womelsdorf, T. (2021). Interactions of
medial and lateral prefrontal cortex in hierarchical predictive
coding. Frontiers in Computational Neuroscience, 15,
605271. https://doi.org/10.3389/fncom.2021.605271, PubMed:
33613221

Averbeck, B. B. (2017). Amygdala and ventral striatum
population codes implement multiple learning rates for
reinforcement learning. In 2017 IEEE Symposium Series on

104 Journal of Cognitive Neuroscience Volume 34, Number 1

D
ow

nloaded from
 http://direct.m

it.edu/jocn/article-pdf/34/1/79/2007813/jocn_a_01780.pdf by D
ELETE York U

niversity user on 16 M
arch 2023

mailto:P.Tiesinga@science.ru.nl
mailto:P.Tiesinga@science.ru.nl
mailto:P.Tiesinga@science.ru.nl
mailto:P.Tiesinga@science.ru.nl
mailto:P.Tiesinga@science.ru.nl
mailto:P.Tiesinga@science.ru.nl
mailto:P.Tiesinga@science.ru.nl
https://github.com/att-circ-contrl/Model-WM-RL-cooperation
https://github.com/att-circ-contrl/Model-WM-RL-cooperation
https://github.com/att-circ-contrl/Model-WM-RL-cooperation
https://github.com/att-circ-contrl/Model-WM-RL-cooperation
https://github.com/att-circ-contrl/Model-WM-RL-cooperation
https://github.com/att-circ-contrl/Model-WM-RL-cooperation
https://github.com/att-circ-contrl/Model-WM-RL-cooperation
https://github.com/att-circ-contrl/Model-WM-RL-cooperation
https://github.com/att-circ-contrl/Model-WM-RL-cooperation
https://github.com/att-circ-contrl/Model-WM-RL-cooperation
https://github.com/att-circ-contrl/Model-WM-RL-cooperation
http://dx.doi.org/10.13039/100000025
http://dx.doi.org/10.13039/100000025
http://dx.doi.org/10.13039/100000025
http://dx.doi.org/10.13039/100000025
http://dx.doi.org/10.13039/100000025
http://dx.doi.org/10.13039/100000025
http://dx.doi.org/10.13039/100000025
http://dx.doi.org/10.13039/100000025
https://doi.org/10.1016/j.neuron.2013.10.018
https://doi.org/10.1016/j.neuron.2013.10.018
https://doi.org/10.1016/j.neuron.2013.10.018
https://doi.org/10.1016/j.neuron.2013.10.018
https://doi.org/10.1016/j.neuron.2013.10.018
https://doi.org/10.1016/j.neuron.2013.10.018
https://doi.org/10.1016/j.neuron.2013.10.018
https://doi.org/10.1016/j.neuron.2013.10.018
https://doi.org/10.1016/j.neuron.2013.10.018
https://doi.org/10.1016/j.neuron.2013.10.018
https://doi.org/10.1016/j.neuron.2013.10.018
https://pubmed.ncbi.nlm.nih.gov/24333055
https://doi.org/10.1162/NECO_a_00779
https://doi.org/10.1162/NECO_a_00779
https://doi.org/10.1162/NECO_a_00779
https://doi.org/10.1162/NECO_a_00779
https://doi.org/10.1162/NECO_a_00779
https://doi.org/10.1162/NECO_a_00779
https://doi.org/10.1162/NECO_a_00779
https://doi.org/10.1162/NECO_a_00779
https://doi.org/10.1162/NECO_a_00779
https://doi.org/10.1162/NECO_a_00779
https://pubmed.ncbi.nlm.nih.gov/26378874
https://doi.org/10.3389/fncom.2021.605271
https://doi.org/10.3389/fncom.2021.605271
https://doi.org/10.3389/fncom.2021.605271
https://doi.org/10.3389/fncom.2021.605271
https://doi.org/10.3389/fncom.2021.605271
https://doi.org/10.3389/fncom.2021.605271
https://doi.org/10.3389/fncom.2021.605271
https://doi.org/10.3389/fncom.2021.605271
https://doi.org/10.3389/fncom.2021.605271
https://pubmed.ncbi.nlm.nih.gov/33613221


Computational Intelligence (SSCI). Honolulu, HI: IEEE.
https://doi.org/10.1109/SSCI.2017.8285354

Badre, D., Doll, B. B., Long, N. M., & Frank, M. J. (2012).
Rostrolateral prefrontal cortex and individual differences in
uncertainty-driven exploration. Neuron, 73, 595–607. https://
doi.org/10.1016/j.neuron.2011.12.025, PubMed: 22325209

Balcarras, M., Ardid, S., Kaping, D., Everling, S., &Womelsdorf, T.
(2016). Attentional selection can be predicted by
reinforcement learning of task-relevant stimulus features
weighted by value-independent stickiness. Journal of
Cognitive Neuroscience, 28, 333–349. https://doi.org/10.1162
/jocn_a_00894, PubMed: 26488586

Balleine, B. W. (2019). The meaning of behavior: Discriminating
reflex and volition in the brain. Neuron, 104, 47–62. https://
doi.org/10.1016/j.neuron.2019.09.024, PubMed: 31600515

Banaie Boroujeni, K., Watson, M., & Womelsdorf, T. (2021).
Gains and losses differentially regulate attentional efficacy at
low and high attentional load. bioRxiv, 1–43. https://doi.org
/10.1101/2020.09.01.278168

Barraclough, D. J., Conroy, M. L., & Lee, D. (2004). Prefrontal
cortex and decision making in a mixed-strategy game. Nature
Neuroscience, 7, 404–410. https://doi.org/10.1038/nn1209,
PubMed: 15004564

Benjamini, Y., & Hochberg, Y. (1995). Controlling the false
discovery rate: A practical and powerful approach to multiple
testing. Journal of the Royal Statistical Society, Series B:
Methodological, 57, 289–300. https://doi.org/10.1111/j.2517
-6161.1995.tb02031.x

Boorman, E. D., Behrens, T. E. J., Woolrich, M. W., &
Rushworth, M. F. S. (2009). How green is the grass on the
other side? Frontopolar cortex and the evidence in favor of
alternative courses of action. Neuron, 62, 733–743. https://
doi.org/10.1016/j.neuron.2009.05.014, PubMed: 19524531

Botvinick, M., Ritter, S., Wang, J. X., Kurth-Nelson, Z., Blundell,
C., & Hassabis, D. (2019). Reinforcement learning, fast and
slow. Trends in Cognitive Sciences, 23, 408–422. https://doi
.org/10.1016/j.tics.2019.02.006, PubMed: 31003893

Cazé, R. D., & van den Meer, M. A. A. (2013). Adaptive
properties of differential learning rates for positive and
negative outcomes. Biological Cybernetics, 107, 711–719.
https://doi.org/10.1007/s00422-013-0571-5, PubMed: 24085507

Chelazzi, L., Marini, F., Pascucci, D., & Turatto, M. (2019).
Getting rid of visual distractors: The why, when, how, and
where. Current Opinion in Psychology, 29, 135–147. https://
doi.org/10.1016/j.copsyc.2019.02.004, PubMed: 30856512

Collins, A. G. E., Brown, J. K., Gold, J. M., Waltz, J. A., & Frank,
M. J. (2014). Working memory contributions to
reinforcement learning impairments in schizophrenia.
Journal of Neuroscience, 34, 13747–13756. https://doi.org/10
.1523/JNEUROSCI.0989-14.2014, PubMed: 25297101

Collins, A. G. E., Ciullo, B., Frank, M. J., & Badre, D. (2017).
Working memory load strengthens reward prediction errors.
Journal of Neuroscience, 37, 4332–4342. https://doi.org/10
.1523/JNEUROSCI.2700-16.2017, PubMed: 28320846

Collins, A. G. E., & Frank, M. J. (2012). How much of
reinforcement learning is workingmemory, not reinforcement
learning? A behavioral, computational, and neurogenetic
analysis. European Journal of Neuroscience, 35, 1024–1035.
https://doi.org/doi.org/10.1111/j.1460-9568.2011.07980.x,
PubMed: 22487033

Collins, A. G. E., & Frank, M. J. (2013). Cognitive control over
learning: Creating, clustering, and generalizing task-set
structure. Psychological Review, 120, 190–229. https://doi
.org/10.1037/a0030852, PubMed: 23356780

Dajani, D. R., & Uddin, L. Q. (2015). Demystifying cognitive
flexibility: Implications for clinical and developmental
neuroscience. Trends in Neurosciences, 38, 571–578. https://
doi.org/10.1016/j.tins.2015.07.003, PubMed: 26343956

Dehaene, S., Kerszberg, M., & Changeux, J. P. (1998). A
neuronal model of a global workspace in effortful cognitive
tasks. Proceedings of the National Academy of Sciences,
U.S.A., 95, 14529–14534. https://doi.org/10.1073/pnas.95.24
.14529, PubMed: 9826734

Donegan, N. H. (1981). Priming-produced facilitation or
diminution of responding to a Pavlovian unconditioned
stimulus. Journal of Experimental Psychology: Animal
Behavior Processes, 7, 295–312. https://doi.org/10.1037/0097
-7403.7.4.295, PubMed: 7288366

Doya, K. (2002). Metalearning and neuromodulation. Neural
Networks, 15, 495–506. https://doi.org/10.1016/S0893-6080(02)
00044-8, PubMed: 12371507

Esber, G. R., & Haselgrove, M. (2011). Reconciling the influence
of predictiveness and uncertainty on stimulus salience: A
model of attention in associative learning. Proceedings of
the Royal Society of London, Series B: Biological Sciences,
278, 2553–2561. https://doi.org/10.1098/rspb.2011.0836,
PubMed: 21653585

Failing, M., & Theeuwes, J. (2018). Selection history: How
reward modulates selectivity of visual attention. Psychonomic
Bulletin & Review, 25, 514–538. https://doi.org/10.3758
/s13423-017-1380-y, PubMed: 28986770

Farashahi, S., Donahue, C. H., Khorsand, P., Seo, H., Lee, D., &
Soltani, A. (2017). Metaplasticity as a neural substrate for
adaptive learning and choice under uncertainty. Neuron,
94, 401–414. https://doi.org/10.1016/j.neuron.2017.03.044,
PubMed: 28426971

Farashahi, S., Rowe, K., Aslami, Z., Lee, D., & Soltani, A. (2017).
Feature-based learning improves adaptability without
compromising precision. Nature Communications, 8, 1768.
https://doi.org/10.1038/s41467-017-01874-w, PubMed:
29170381

Frank, M. J., Moustafa, A. A., Haughey, H. M., Curran, T., &
Hutchison, K. E. (2007). Genetic triple dissociation reveals
multiple roles for dopamine in reinforcement learning.
Proceedings of the National Academy of Sciences, U.S.A.,
104, 16311–16316. https://doi.org/10.1073/pnas.0706111104,
PubMed: 17913879

Frank, M. J., Seeberger, L. C., & O’Reilly, R. C. (2004). By carrot or
by stick: Cognitive reinforcement learning in Parkinsonism.
Science, 306, 1940–1943. https://doi.org/10.1126/science
.1102941, PubMed: 15528409

Gershman, S. J., & Daw, N. D. (2017). Reinforcement learning
and episodic memory in humans and animals: An integrative
framework. Annual Review of Psychology, 68, 101–128.
https://doi.org/10.1146/annurev-psych-122414-033625,
PubMed: 27618944

Hall, G., & Pearce, J. M. (1979). Latent inhibition of a CS during
CS–US pairings. Journal of Experimental Psychology:
Animal Behavior Processes, 5, 31–42. https://doi.org/10.1037
/0097-7403.5.1.31, PubMed: 528877

Hassani, S. A., Oemisch, M., Balcarras, M., Westendorff, S.,
Ardid, S., van der Meer, M. A., et al. (2017). A computational
psychiatry approach identifies how alpha-2A noradrenergic
agonist guanfacine affects feature-based reinforcement
learning in the macaque. Scientific Reports, 7, 40606. https://
doi.org/10.1038/srep40606, PubMed: 28091572

Ito, M., & Doya, K. (2009). Validation of decision-making
models and analysis of decision variables in the rat basal
ganglia. Journal of Neuroscience, 29, 9861–9874. https://doi
.org/10.1523/JNEUROSCI.6157-08.2009, PubMed: 19657038

Kahnt, T., Park, S. Q., Cohen, M. X., Beck, A., Heinz, A., &
Wrase, J. (2009). Dorsal striatal–midbrain connectivity in
humans predicts how reinforcements are used to guide
decisions. Journal of Cognitive Neuroscience, 21,
1332–1345. https://doi.org/10.1162/jocn.2009.21092,
PubMed: 18752410

Womelsdorf, Watson, and Tiesinga 105

D
ow

nloaded from
 http://direct.m

it.edu/jocn/article-pdf/34/1/79/2007813/jocn_a_01780.pdf by D
ELETE York U

niversity user on 16 M
arch 2023

https://doi.org/10.1109/SSCI.2017.8285354
https://doi.org/10.1109/SSCI.2017.8285354
https://doi.org/10.1109/SSCI.2017.8285354
https://doi.org/10.1109/SSCI.2017.8285354
https://doi.org/10.1109/SSCI.2017.8285354
https://doi.org/10.1109/SSCI.2017.8285354
https://doi.org/10.1109/SSCI.2017.8285354
https://doi.org/10.1109/SSCI.2017.8285354
https://doi.org/10.1109/SSCI.2017.8285354
https://doi.org/10.1016/j.neuron.2011.12.025
https://doi.org/10.1016/j.neuron.2011.12.025
https://doi.org/10.1016/j.neuron.2011.12.025
https://doi.org/10.1016/j.neuron.2011.12.025
https://doi.org/10.1016/j.neuron.2011.12.025
https://doi.org/10.1016/j.neuron.2011.12.025
https://doi.org/10.1016/j.neuron.2011.12.025
https://doi.org/10.1016/j.neuron.2011.12.025
https://doi.org/10.1016/j.neuron.2011.12.025
https://doi.org/10.1016/j.neuron.2011.12.025
https://doi.org/10.1016/j.neuron.2011.12.025
https://doi.org/10.1016/j.neuron.2011.12.025
https://pubmed.ncbi.nlm.nih.gov/22325209
https://doi.org/10.1162/jocn_a_00894
https://doi.org/10.1162/jocn_a_00894
https://doi.org/10.1162/jocn_a_00894
https://doi.org/10.1162/jocn_a_00894
https://doi.org/10.1162/jocn_a_00894
https://doi.org/10.1162/jocn_a_00894
https://doi.org/10.1162/jocn_a_00894
https://doi.org/10.1162/jocn_a_00894
https://doi.org/10.1162/jocn_a_00894
https://pubmed.ncbi.nlm.nih.gov/26488586
https://doi.org/10.1016/j.neuron.2019.09.024
https://doi.org/10.1016/j.neuron.2019.09.024
https://doi.org/10.1016/j.neuron.2019.09.024
https://doi.org/10.1016/j.neuron.2019.09.024
https://doi.org/10.1016/j.neuron.2019.09.024
https://doi.org/10.1016/j.neuron.2019.09.024
https://doi.org/10.1016/j.neuron.2019.09.024
https://doi.org/10.1016/j.neuron.2019.09.024
https://doi.org/10.1016/j.neuron.2019.09.024
https://doi.org/10.1016/j.neuron.2019.09.024
https://doi.org/10.1016/j.neuron.2019.09.024
https://doi.org/10.1016/j.neuron.2019.09.024
https://pubmed.ncbi.nlm.nih.gov/31600515
https://pubmed.ncbi.nlm.nih.gov/27599017
https://pubmed.ncbi.nlm.nih.gov/27599017
https://pubmed.ncbi.nlm.nih.gov/27599017
https://doi.org/10.1101/2020.09.01.278168
https://pubmed.ncbi.nlm.nih.gov/27599017
https://pubmed.ncbi.nlm.nih.gov/27599017
https://pubmed.ncbi.nlm.nih.gov/27599017
https://pubmed.ncbi.nlm.nih.gov/27599017
https://pubmed.ncbi.nlm.nih.gov/27599017
https://doi.org/10.1101/2020.09.01.278168
https://doi.org/10.1038/nn1209
https://doi.org/10.1038/nn1209
https://doi.org/10.1038/nn1209
https://doi.org/10.1038/nn1209
https://doi.org/10.1038/nn1209
https://doi.org/10.1038/nn1209
https://doi.org/10.1038/nn1209
https://pubmed.ncbi.nlm.nih.gov/15004564
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1016/j.neuron.2009.05.014
https://doi.org/10.1016/j.neuron.2009.05.014
https://doi.org/10.1016/j.neuron.2009.05.014
https://doi.org/10.1016/j.neuron.2009.05.014
https://doi.org/10.1016/j.neuron.2009.05.014
https://doi.org/10.1016/j.neuron.2009.05.014
https://doi.org/10.1016/j.neuron.2009.05.014
https://doi.org/10.1016/j.neuron.2009.05.014
https://doi.org/10.1016/j.neuron.2009.05.014
https://doi.org/10.1016/j.neuron.2009.05.014
https://doi.org/10.1016/j.neuron.2009.05.014
https://doi.org/10.1016/j.neuron.2009.05.014
https://pubmed.ncbi.nlm.nih.gov/19524531
https://doi.org/10.1016/j.tics.2019.02.006
https://doi.org/10.1016/j.tics.2019.02.006
https://doi.org/10.1016/j.tics.2019.02.006
https://doi.org/10.1016/j.tics.2019.02.006
https://doi.org/10.1016/j.tics.2019.02.006
https://doi.org/10.1016/j.tics.2019.02.006
https://doi.org/10.1016/j.tics.2019.02.006
https://doi.org/10.1016/j.tics.2019.02.006
https://doi.org/10.1016/j.tics.2019.02.006
https://doi.org/10.1016/j.tics.2019.02.006
https://doi.org/10.1016/j.tics.2019.02.006
https://pubmed.ncbi.nlm.nih.gov/31003893
https://doi.org/10.1007/s00422-013-0571-5
https://doi.org/10.1007/s00422-013-0571-5
https://doi.org/10.1007/s00422-013-0571-5
https://doi.org/10.1007/s00422-013-0571-5
https://doi.org/10.1007/s00422-013-0571-5
https://doi.org/10.1007/s00422-013-0571-5
https://doi.org/10.1007/s00422-013-0571-5
https://doi.org/10.1007/s00422-013-0571-5
https://doi.org/10.1007/s00422-013-0571-5
https://doi.org/10.1007/s00422-013-0571-5
https://pubmed.ncbi.nlm.nih.gov/24085507
https://doi.org/10.1016/j.copsyc.2019.02.004
https://doi.org/10.1016/j.copsyc.2019.02.004
https://doi.org/10.1016/j.copsyc.2019.02.004
https://doi.org/10.1016/j.copsyc.2019.02.004
https://doi.org/10.1016/j.copsyc.2019.02.004
https://doi.org/10.1016/j.copsyc.2019.02.004
https://doi.org/10.1016/j.copsyc.2019.02.004
https://doi.org/10.1016/j.copsyc.2019.02.004
https://doi.org/10.1016/j.copsyc.2019.02.004
https://doi.org/10.1016/j.copsyc.2019.02.004
https://doi.org/10.1016/j.copsyc.2019.02.004
https://doi.org/10.1016/j.copsyc.2019.02.004
https://pubmed.ncbi.nlm.nih.gov/30856512
https://doi.org/10.1523/JNEUROSCI.0989-14.2014
https://doi.org/10.1523/JNEUROSCI.0989-14.2014
https://doi.org/10.1523/JNEUROSCI.0989-14.2014
https://doi.org/10.1523/JNEUROSCI.0989-14.2014
https://doi.org/10.1523/JNEUROSCI.0989-14.2014
https://doi.org/10.1523/JNEUROSCI.0989-14.2014
https://doi.org/10.1523/JNEUROSCI.0989-14.2014
https://doi.org/10.1523/JNEUROSCI.0989-14.2014
https://doi.org/10.1523/JNEUROSCI.0989-14.2014
https://doi.org/10.1523/JNEUROSCI.0989-14.2014
https://doi.org/10.1523/JNEUROSCI.0989-14.2014
https://pubmed.ncbi.nlm.nih.gov/25297101
https://doi.org/10.1523/JNEUROSCI.2700-16.2017
https://doi.org/10.1523/JNEUROSCI.2700-16.2017
https://doi.org/10.1523/JNEUROSCI.2700-16.2017
https://doi.org/10.1523/JNEUROSCI.2700-16.2017
https://doi.org/10.1523/JNEUROSCI.2700-16.2017
https://doi.org/10.1523/JNEUROSCI.2700-16.2017
https://doi.org/10.1523/JNEUROSCI.2700-16.2017
https://doi.org/10.1523/JNEUROSCI.2700-16.2017
https://doi.org/10.1523/JNEUROSCI.2700-16.2017
https://doi.org/10.1523/JNEUROSCI.2700-16.2017
https://doi.org/10.1523/JNEUROSCI.2700-16.2017
https://pubmed.ncbi.nlm.nih.gov/28320846
https://doi.org/doi.org/10.1111/j.1460-9568.2011.07980.x
https://doi.org/doi.org/10.1111/j.1460-9568.2011.07980.x
https://doi.org/doi.org/10.1111/j.1460-9568.2011.07980.x
https://doi.org/doi.org/10.1111/j.1460-9568.2011.07980.x
https://doi.org/doi.org/10.1111/j.1460-9568.2011.07980.x
https://doi.org/doi.org/10.1111/j.1460-9568.2011.07980.x
https://doi.org/doi.org/10.1111/j.1460-9568.2011.07980.x
https://doi.org/doi.org/10.1111/j.1460-9568.2011.07980.x
https://doi.org/doi.org/10.1111/j.1460-9568.2011.07980.x
https://doi.org/doi.org/10.1111/j.1460-9568.2011.07980.x
https://doi.org/doi.org/10.1111/j.1460-9568.2011.07980.x
https://doi.org/doi.org/10.1111/j.1460-9568.2011.07980.x
https://doi.org/doi.org/10.1111/j.1460-9568.2011.07980.x
https://doi.org/doi.org/10.1111/j.1460-9568.2011.07980.x
https://pubmed.ncbi.nlm.nih.gov/22487033
https://doi.org/10.1037/a0030852
https://doi.org/10.1037/a0030852
https://doi.org/10.1037/a0030852
https://doi.org/10.1037/a0030852
https://doi.org/10.1037/a0030852
https://doi.org/10.1037/a0030852
https://doi.org/10.1037/a0030852
https://pubmed.ncbi.nlm.nih.gov/23356780
https://doi.org/10.1016/j.tins.2015.07.003
https://doi.org/10.1016/j.tins.2015.07.003
https://doi.org/10.1016/j.tins.2015.07.003
https://doi.org/10.1016/j.tins.2015.07.003
https://doi.org/10.1016/j.tins.2015.07.003
https://doi.org/10.1016/j.tins.2015.07.003
https://doi.org/10.1016/j.tins.2015.07.003
https://doi.org/10.1016/j.tins.2015.07.003
https://doi.org/10.1016/j.tins.2015.07.003
https://doi.org/10.1016/j.tins.2015.07.003
https://doi.org/10.1016/j.tins.2015.07.003
https://doi.org/10.1016/j.tins.2015.07.003
https://pubmed.ncbi.nlm.nih.gov/26343956
https://doi.org/10.1073/pnas.95.24.14529
https://doi.org/10.1073/pnas.95.24.14529
https://doi.org/10.1073/pnas.95.24.14529
https://doi.org/10.1073/pnas.95.24.14529
https://doi.org/10.1073/pnas.95.24.14529
https://doi.org/10.1073/pnas.95.24.14529
https://doi.org/10.1073/pnas.95.24.14529
https://doi.org/10.1073/pnas.95.24.14529
https://doi.org/10.1073/pnas.95.24.14529
https://doi.org/10.1073/pnas.95.24.14529
https://pubmed.ncbi.nlm.nih.gov/9826734
https://doi.org/10.1037/0097-7403.7.4.295
https://doi.org/10.1037/0097-7403.7.4.295
https://doi.org/10.1037/0097-7403.7.4.295
https://doi.org/10.1037/0097-7403.7.4.295
https://doi.org/10.1037/0097-7403.7.4.295
https://doi.org/10.1037/0097-7403.7.4.295
https://doi.org/10.1037/0097-7403.7.4.295
https://doi.org/10.1037/0097-7403.7.4.295
https://doi.org/10.1037/0097-7403.7.4.295
https://doi.org/10.1037/0097-7403.7.4.295
https://doi.org/10.1037/0097-7403.7.4.295
https://pubmed.ncbi.nlm.nih.gov/7288366
https://doi.org/10.1016/S0893-6080(02)00044-8
https://doi.org/10.1016/S0893-6080(02)00044-8
https://doi.org/10.1016/S0893-6080(02)00044-8
https://doi.org/10.1016/S0893-6080(02)00044-8
https://doi.org/10.1016/S0893-6080(02)00044-8
https://doi.org/10.1016/S0893-6080(02)00044-8
https://doi.org/10.1016/S0893-6080(02)00044-8
https://doi.org/10.1016/S0893-6080(02)00044-8
https://doi.org/10.1016/S0893-6080(02)00044-8
https://doi.org/10.1016/S0893-6080(02)00044-8
https://pubmed.ncbi.nlm.nih.gov/12371507
https://doi.org/10.1098/rspb.2011.0836
https://doi.org/10.1098/rspb.2011.0836
https://doi.org/10.1098/rspb.2011.0836
https://doi.org/10.1098/rspb.2011.0836
https://doi.org/10.1098/rspb.2011.0836
https://doi.org/10.1098/rspb.2011.0836
https://doi.org/10.1098/rspb.2011.0836
https://doi.org/10.1098/rspb.2011.0836
https://doi.org/10.1098/rspb.2011.0836
https://pubmed.ncbi.nlm.nih.gov/21653585
https://doi.org/10.3758/s13423-017-1380-y
https://doi.org/10.3758/s13423-017-1380-y
https://doi.org/10.3758/s13423-017-1380-y
https://doi.org/10.3758/s13423-017-1380-y
https://doi.org/10.3758/s13423-017-1380-y
https://doi.org/10.3758/s13423-017-1380-y
https://doi.org/10.3758/s13423-017-1380-y
https://doi.org/10.3758/s13423-017-1380-y
https://doi.org/10.3758/s13423-017-1380-y
https://doi.org/10.3758/s13423-017-1380-y
https://pubmed.ncbi.nlm.nih.gov/28986770
https://doi.org/10.1016/j.neuron.2017.03.044
https://doi.org/10.1016/j.neuron.2017.03.044
https://doi.org/10.1016/j.neuron.2017.03.044
https://doi.org/10.1016/j.neuron.2017.03.044
https://doi.org/10.1016/j.neuron.2017.03.044
https://doi.org/10.1016/j.neuron.2017.03.044
https://doi.org/10.1016/j.neuron.2017.03.044
https://doi.org/10.1016/j.neuron.2017.03.044
https://doi.org/10.1016/j.neuron.2017.03.044
https://doi.org/10.1016/j.neuron.2017.03.044
https://doi.org/10.1016/j.neuron.2017.03.044
https://pubmed.ncbi.nlm.nih.gov/28426971
https://doi.org/10.1038/s41467-017-01874-w
https://doi.org/10.1038/s41467-017-01874-w
https://doi.org/10.1038/s41467-017-01874-w
https://doi.org/10.1038/s41467-017-01874-w
https://doi.org/10.1038/s41467-017-01874-w
https://doi.org/10.1038/s41467-017-01874-w
https://doi.org/10.1038/s41467-017-01874-w
https://doi.org/10.1038/s41467-017-01874-w
https://doi.org/10.1038/s41467-017-01874-w
https://doi.org/10.1038/s41467-017-01874-w
https://pubmed.ncbi.nlm.nih.gov/29170381
https://doi.org/10.1073/pnas.0706111104
https://doi.org/10.1073/pnas.0706111104
https://doi.org/10.1073/pnas.0706111104
https://doi.org/10.1073/pnas.0706111104
https://doi.org/10.1073/pnas.0706111104
https://doi.org/10.1073/pnas.0706111104
https://doi.org/10.1073/pnas.0706111104
https://doi.org/10.1073/pnas.0706111104
https://pubmed.ncbi.nlm.nih.gov/17913879
https://doi.org/10.1126/science.1102941
https://doi.org/10.1126/science.1102941
https://doi.org/10.1126/science.1102941
https://doi.org/10.1126/science.1102941
https://doi.org/10.1126/science.1102941
https://doi.org/10.1126/science.1102941
https://doi.org/10.1126/science.1102941
https://doi.org/10.1126/science.1102941
https://pubmed.ncbi.nlm.nih.gov/15528409
https://doi.org/10.1146/annurev-psych-122414-033625
https://doi.org/10.1146/annurev-psych-122414-033625
https://doi.org/10.1146/annurev-psych-122414-033625
https://doi.org/10.1146/annurev-psych-122414-033625
https://doi.org/10.1146/annurev-psych-122414-033625
https://doi.org/10.1146/annurev-psych-122414-033625
https://doi.org/10.1146/annurev-psych-122414-033625
https://doi.org/10.1146/annurev-psych-122414-033625
https://doi.org/10.1146/annurev-psych-122414-033625
https://doi.org/10.1146/annurev-psych-122414-033625
https://pubmed.ncbi.nlm.nih.gov/27618944
https://doi.org/10.1037/0097-7403.5.1.31
https://doi.org/10.1037/0097-7403.5.1.31
https://doi.org/10.1037/0097-7403.5.1.31
https://doi.org/10.1037/0097-7403.5.1.31
https://doi.org/10.1037/0097-7403.5.1.31
https://doi.org/10.1037/0097-7403.5.1.31
https://doi.org/10.1037/0097-7403.5.1.31
https://doi.org/10.1037/0097-7403.5.1.31
https://doi.org/10.1037/0097-7403.5.1.31
https://doi.org/10.1037/0097-7403.5.1.31
https://doi.org/10.1037/0097-7403.5.1.31
https://pubmed.ncbi.nlm.nih.gov/528877
https://doi.org/10.1038/srep40606
https://doi.org/10.1038/srep40606
https://doi.org/10.1038/srep40606
https://doi.org/10.1038/srep40606
https://doi.org/10.1038/srep40606
https://doi.org/10.1038/srep40606
https://doi.org/10.1038/srep40606
https://doi.org/10.1038/srep40606
https://pubmed.ncbi.nlm.nih.gov/28091572
https://doi.org/10.1523/JNEUROSCI.6157-08.2009
https://doi.org/10.1523/JNEUROSCI.6157-08.2009
https://doi.org/10.1523/JNEUROSCI.6157-08.2009
https://doi.org/10.1523/JNEUROSCI.6157-08.2009
https://doi.org/10.1523/JNEUROSCI.6157-08.2009
https://doi.org/10.1523/JNEUROSCI.6157-08.2009
https://doi.org/10.1523/JNEUROSCI.6157-08.2009
https://doi.org/10.1523/JNEUROSCI.6157-08.2009
https://doi.org/10.1523/JNEUROSCI.6157-08.2009
https://doi.org/10.1523/JNEUROSCI.6157-08.2009
https://doi.org/10.1523/JNEUROSCI.6157-08.2009
https://pubmed.ncbi.nlm.nih.gov/19657038
https://doi.org/10.1162/jocn.2009.21092
https://doi.org/10.1162/jocn.2009.21092
https://doi.org/10.1162/jocn.2009.21092
https://doi.org/10.1162/jocn.2009.21092
https://doi.org/10.1162/jocn.2009.21092
https://doi.org/10.1162/jocn.2009.21092
https://doi.org/10.1162/jocn.2009.21092
https://doi.org/10.1162/jocn.2009.21092
https://doi.org/10.1162/jocn.2009.21092
https://pubmed.ncbi.nlm.nih.gov/18752410


Khamassi, M., Enel, P., Dominey, P. F., & Procyk, E. (2013).
Medial prefrontal cortex and the adaptive regulation of
reinforcement learning parameters. Progress in Brain
Research, 202, 441–464. https://doi.org/10.1016/B978-0-444
-62604-2.00022-8, PubMed: 23317844

Khamassi, M., Quilodran, R., Enel, P., Dominey, P. F., & Procyk,
E. (2015). Behavioral regulation and the modulation of
information coding in the lateral prefrontal and cingulate
cortex. Cerebral Cortex, 25, 3197–3218. https://doi.org/10
.1093/cercor/bhu114, PubMed: 24904073

Klein, T. A., Neumann, J., Reuter, M., Hennig, J., von Cramon,
D. Y., & Ullsperger, M. (2007). Genetically determined
differences in learning from errors. Science, 318, 1642–1645.
https://doi.org/doi.org/10.1126/science.1145044, PubMed:
18063800

Kour, G., & Morris, G. (2019). Estimating attentional set-shifting
dynamics in varying contextual bandits. bioRxiv, 621300.
https://doi.org/10.1101/621300

Krugel, L. K., Biele, G., Mohr, P. N. C., Li, S.-C., & Heekeren, H. R.
(2009). Genetic variation in dopaminergic neuromodulation
influences the ability to rapidly and flexibly adapt decisions.
Proceedings of the National Academy of Sciences, U.S.A.,
106, 17951–17956. https://doi.org/10.1073/pnas.0905191106,
PubMed: 19822738

Kruschke, J. K. (2011). Models of attentional learning. In E. M.
Pothos & A. J. Wills (Eds.), Formal approaches in
categorization (pp. 120–152). Cambridge: Cambridge
University Press. https://doi.org/10.1017/CBO9780511921322
.006

Lavie, N., & Fox, E. (2000). The role of perceptual load in
negative priming. Journal of Experimental Psychology:
Human Perception and Performance, 26, 1038–1052.
https://doi.org/10.1037/0096-1523.26.3.1038, PubMed:
10884008

Le Pelley, M. E., Pearson, D., Griffiths, O., & Beesley, T. (2015).
When goals conflict with values: Counterproductive
attentional and oculomotor capture by reward-related
stimuli. Journal of Experimental Psychology: General, 144,
158–171. https://doi.org/10.1037/xge0000037, PubMed:
25420117

Lefebvre, G., Lebreton, M., Meyniel, F., Bourgeois-Gironde, S.,
& Palminteri, S. (2017). Behavioural and neural
characterization of optimistic reinforcement learning. Nature
Human Behaviour, 1, 0067. https://doi.org/10.1038/s41562
-017-0067

Leong, Y. C., Radulescu, A., Daniel, R., DeWoskin, V., & Niv, Y.
(2017). Dynamic interaction between reinforcement learning
and attention in multidimensional environments. Neuron,
93, 451–463. https://doi.org/10.1016/j.neuron.2016.12.040,
PubMed: 28103483

McDougle, S. D., & Collins, A. G. E. (2020). Modeling the
influence of working memory, reinforcement, and action
uncertainty on reaction time and choice during instrumental
learning. Psychonomic Bulletin & Review, 28, 20–39. https://
doi.org/10.3758/s13423-020-01774-z, PubMed: 32710256

Miller, K. J., Shenhav, A., & Ludvig, E. A. (2019). Habits without
values. Psychological Review, 126, 292–311. https://doi.org
/10.1037/rev0000120, PubMed: 30676040

Murphy, K. P. (2012). Machine learning: A probabilistic
perspective. Cambridge, MA: MIT Press.

Namburi, P., Beyeler, A., Yorozu, S., Calhoon, G. G., Halbert,
S. A., Wichmann, R., et al. (2015). A circuit mechanism for
differentiating positive and negative associations. Nature,
520, 675–678. https://doi.org/10.1038/nature14366, PubMed:
25925480

Nassar, M. R., Wilson, R. C., Heasly, B., & Gold, J. I. (2010).
An approximately Bayesian delta-rule model explains the
dynamics of belief updating in a changing environment.

Journal of Neuroscience, 30, 12366–12378. https://doi.org/10
.1523/JNEUROSCI.0822-10.2010, PubMed: 20844132

Niv, Y., Daniel, R., Geana, A., Gershman, S. J., Leong, Y. C.,
Radulescu, A., et al. (2015). Reinforcement learning in
multidimensional environments relies on attention
mechanisms. Journal of Neuroscience, 35, 8145–8157.
https://doi.org/10.1523/JNEUROSCI.2978-14.2015, PubMed:
26019331

Noonan, M. P., Crittenden, B. M., Jensen, O., & Stokes, M. G.
(2018). Selective inhibition of distracting input. Behavioural
Brain Research, 355, 36–47. https://doi.org/10.1016/j.bbr.2017
.10.010, PubMed: 29042157

Oemisch, M., Westendorff, S., Azimi, M., Hassani, S. A., Ardid, S.,
Tiesinga, P., et al. (2019). Feature-specific prediction errors
and surprise across macaque fronto-striatal circuits. Nature
Communications, 10, 176. https://doi.org/10.1038/s41467-018
-08184-9, PubMed: 30635579

Papachristos, E. B., & Gallistel, C. R. (2006). Autoshaped head
poking in the mouse: A quantitative analysis of the learning
curve. Journal of the Experimental Analysis of Behavior,
85, 293–308. https://doi.org/10.1901/jeab.2006.71-05,
PubMed: 16776053

Pinherio, J. C., & Bates, D. M. (1996). Unconstrained
parametrizations for variance–covariance matrices. Statistics
and Computing, 6, 289–296. https://doi.org/10.1007
/BF00140873

Poldrack, R. A., & Packard, M. G. (2003). Competition among
multiple memory systems: Converging evidence from animal
and human brain studies. Neuropsychologia, 41, 245–251.
https://doi.org/10.1016/S0028-3932(02)00157-4, PubMed:
12457750

Radulescu, A. (2020). Computational mechanisms of selective
attention during reinforcement learning. Princeton, NJ:
Princeton University.

Radulescu, A., Daniel, R., & Niv, Y. (2016). The effects of aging
on the interaction between reinforcement learning and
attention. Psychology and Aging, 31, 747–757. https://doi.org
/10.1037/pag0000112, PubMed: 27599017

Radulescu, A., Niv, Y., & Ballard, I. (2019). Holistic
reinforcement learning: The role of structure and attention.
Trends in Cognitive Sciences, 23, 278–292. https://doi.org/10
.1016/j.tics.2019.01.010, PubMed: 30824227

Rmus, M., McDougle, S. D., & Collins, A. G. E. (2020). The role
of executive function in shaping reinforcement learning.
Current Opinion in Behavioral Sciences, 38, 66–73. https://
doi.org/10.1016/j.cobeha.2020.10.003

Roelfsema, P. R., & Holtmaat, A. (2018). Control of synaptic
plasticity in deep cortical networks. Nature Reviews
Neuroscience, 19, 166–180. https://doi.org/10.1038/nrn.2018
.6, PubMed: 29449713

Rombouts, J. O., Bohte, S. M., & Roelfsema, P. R. (2015). How
attention can create synaptic tags for the learning of working
memories in sequential tasks. PLoS Computational Biology,
11, e1004060. https://doi.org/10.1371/journal.pcbi.1004060,
PubMed: 25742003

Rusz, D., Le Pelley, M. E., Kompier, M. A. J., Mait, L., & Bijleveld,
E. (2020). Reward-driven distraction: A meta-analysis.
Psychological Bulletin, 146, 872–899. https://doi.org/10.1037
/bul0000296, PubMed: 32686948

Schönberg, T., Daw, N. D., Joel, D., & O’Doherty, J. P. (2007).
Reinforcement learning signals in the human striatum
distinguish learners from nonlearners during reward-based
decision making. Journal of Neuroscience, 27, 12860–12867.
https://doi.org/10.1523/JNEUROSCI.2496-07.2007, PubMed:
18032658

Schweighofer, N., & Arbib, M. A. (1998). A model of cerebellar
metaplasticity. Learning & Memory, 4, 421–428. https://doi
.org/10.1101/lm.4.5.421, PubMed: 10701881

106 Journal of Cognitive Neuroscience Volume 34, Number 1

D
ow

nloaded from
 http://direct.m

it.edu/jocn/article-pdf/34/1/79/2007813/jocn_a_01780.pdf by D
ELETE York U

niversity user on 16 M
arch 2023

https://doi.org/10.1016/B978-0-444-62604-2.00022-8
https://doi.org/10.1016/B978-0-444-62604-2.00022-8
https://doi.org/10.1016/B978-0-444-62604-2.00022-8
https://doi.org/10.1016/B978-0-444-62604-2.00022-8
https://doi.org/10.1016/B978-0-444-62604-2.00022-8
https://doi.org/10.1016/B978-0-444-62604-2.00022-8
https://doi.org/10.1016/B978-0-444-62604-2.00022-8
https://doi.org/10.1016/B978-0-444-62604-2.00022-8
https://doi.org/10.1016/B978-0-444-62604-2.00022-8
https://doi.org/10.1016/B978-0-444-62604-2.00022-8
https://doi.org/10.1016/B978-0-444-62604-2.00022-8
https://doi.org/10.1016/B978-0-444-62604-2.00022-8
https://doi.org/10.1016/B978-0-444-62604-2.00022-8
https://doi.org/10.1016/B978-0-444-62604-2.00022-8
https://pubmed.ncbi.nlm.nih.gov/23317844
https://doi.org/10.1093/cercor/bhu114
https://doi.org/10.1093/cercor/bhu114
https://doi.org/10.1093/cercor/bhu114
https://doi.org/10.1093/cercor/bhu114
https://doi.org/10.1093/cercor/bhu114
https://doi.org/10.1093/cercor/bhu114
https://doi.org/10.1093/cercor/bhu114
https://doi.org/10.1093/cercor/bhu114
https://doi.org/10.1093/cercor/bhu114
https://pubmed.ncbi.nlm.nih.gov/24904073
https://doi.org/doi.org/10.1126/science.1145044
https://doi.org/doi.org/10.1126/science.1145044
https://doi.org/doi.org/10.1126/science.1145044
https://doi.org/doi.org/10.1126/science.1145044
https://doi.org/doi.org/10.1126/science.1145044
https://doi.org/doi.org/10.1126/science.1145044
https://doi.org/doi.org/10.1126/science.1145044
https://doi.org/doi.org/10.1126/science.1145044
https://doi.org/doi.org/10.1126/science.1145044
https://doi.org/doi.org/10.1126/science.1145044
https://pubmed.ncbi.nlm.nih.gov/18063800
https://doi.org/10.1101/621300
https://doi.org/10.1101/621300
https://doi.org/10.1101/621300
https://doi.org/10.1101/621300
https://doi.org/10.1101/621300
https://doi.org/10.1101/621300
https://doi.org/10.1101/621300
https://doi.org/10.1073/pnas.0905191106
https://doi.org/10.1073/pnas.0905191106
https://doi.org/10.1073/pnas.0905191106
https://doi.org/10.1073/pnas.0905191106
https://doi.org/10.1073/pnas.0905191106
https://doi.org/10.1073/pnas.0905191106
https://doi.org/10.1073/pnas.0905191106
https://doi.org/10.1073/pnas.0905191106
https://pubmed.ncbi.nlm.nih.gov/19822738
https://doi.org/10.1017/CBO9780511921322.006
https://doi.org/10.1017/CBO9780511921322.006
https://doi.org/10.1017/CBO9780511921322.006
https://doi.org/10.1017/CBO9780511921322.006
https://doi.org/10.1017/CBO9780511921322.006
https://doi.org/10.1017/CBO9780511921322.006
https://doi.org/10.1017/CBO9780511921322.006
https://doi.org/10.1017/CBO9780511921322.006
https://doi.org/10.1037/0096-1523.26.3.1038
https://doi.org/10.1037/0096-1523.26.3.1038
https://doi.org/10.1037/0096-1523.26.3.1038
https://doi.org/10.1037/0096-1523.26.3.1038
https://doi.org/10.1037/0096-1523.26.3.1038
https://doi.org/10.1037/0096-1523.26.3.1038
https://doi.org/10.1037/0096-1523.26.3.1038
https://doi.org/10.1037/0096-1523.26.3.1038
https://doi.org/10.1037/0096-1523.26.3.1038
https://doi.org/10.1037/0096-1523.26.3.1038
https://doi.org/10.1037/0096-1523.26.3.1038
https://pubmed.ncbi.nlm.nih.gov/10884008
https://doi.org/10.1037/xge0000037
https://doi.org/10.1037/xge0000037
https://doi.org/10.1037/xge0000037
https://doi.org/10.1037/xge0000037
https://doi.org/10.1037/xge0000037
https://doi.org/10.1037/xge0000037
https://doi.org/10.1037/xge0000037
https://pubmed.ncbi.nlm.nih.gov/25420117
https://doi.org/10.1038/s41562-017-0067
https://doi.org/10.1038/s41562-017-0067
https://doi.org/10.1038/s41562-017-0067
https://doi.org/10.1038/s41562-017-0067
https://doi.org/10.1038/s41562-017-0067
https://doi.org/10.1038/s41562-017-0067
https://doi.org/10.1038/s41562-017-0067
https://doi.org/10.1038/s41562-017-0067
https://doi.org/10.1038/s41562-017-0067
https://doi.org/10.1016/j.neuron.2016.12.040
https://doi.org/10.1016/j.neuron.2016.12.040
https://doi.org/10.1016/j.neuron.2016.12.040
https://doi.org/10.1016/j.neuron.2016.12.040
https://doi.org/10.1016/j.neuron.2016.12.040
https://doi.org/10.1016/j.neuron.2016.12.040
https://doi.org/10.1016/j.neuron.2016.12.040
https://doi.org/10.1016/j.neuron.2016.12.040
https://doi.org/10.1016/j.neuron.2016.12.040
https://doi.org/10.1016/j.neuron.2016.12.040
https://doi.org/10.1016/j.neuron.2016.12.040
https://pubmed.ncbi.nlm.nih.gov/28103483
https://doi.org/10.3758/s13423-020-01774-z
https://doi.org/10.3758/s13423-020-01774-z
https://doi.org/10.3758/s13423-020-01774-z
https://doi.org/10.3758/s13423-020-01774-z
https://doi.org/10.3758/s13423-020-01774-z
https://doi.org/10.3758/s13423-020-01774-z
https://doi.org/10.3758/s13423-020-01774-z
https://doi.org/10.3758/s13423-020-01774-z
https://doi.org/10.3758/s13423-020-01774-z
https://doi.org/10.3758/s13423-020-01774-z
https://doi.org/10.3758/s13423-020-01774-z
https://pubmed.ncbi.nlm.nih.gov/32710256
https://doi.org/10.1037/rev0000120
https://doi.org/10.1037/rev0000120
https://doi.org/10.1037/rev0000120
https://doi.org/10.1037/rev0000120
https://doi.org/10.1037/rev0000120
https://doi.org/10.1037/rev0000120
https://doi.org/10.1037/rev0000120
https://pubmed.ncbi.nlm.nih.gov/30676040
https://doi.org/10.1038/nature14366
https://doi.org/10.1038/nature14366
https://doi.org/10.1038/nature14366
https://doi.org/10.1038/nature14366
https://doi.org/10.1038/nature14366
https://doi.org/10.1038/nature14366
https://doi.org/10.1038/nature14366
https://pubmed.ncbi.nlm.nih.gov/25925480
https://doi.org/10.1523/JNEUROSCI.0822-10.2010
https://doi.org/10.1523/JNEUROSCI.0822-10.2010
https://doi.org/10.1523/JNEUROSCI.0822-10.2010
https://doi.org/10.1523/JNEUROSCI.0822-10.2010
https://doi.org/10.1523/JNEUROSCI.0822-10.2010
https://doi.org/10.1523/JNEUROSCI.0822-10.2010
https://doi.org/10.1523/JNEUROSCI.0822-10.2010
https://doi.org/10.1523/JNEUROSCI.0822-10.2010
https://doi.org/10.1523/JNEUROSCI.0822-10.2010
https://doi.org/10.1523/JNEUROSCI.0822-10.2010
https://doi.org/10.1523/JNEUROSCI.0822-10.2010
https://pubmed.ncbi.nlm.nih.gov/20844132
https://doi.org/10.1523/JNEUROSCI.2978-14.2015
https://doi.org/10.1523/JNEUROSCI.2978-14.2015
https://doi.org/10.1523/JNEUROSCI.2978-14.2015
https://doi.org/10.1523/JNEUROSCI.2978-14.2015
https://doi.org/10.1523/JNEUROSCI.2978-14.2015
https://doi.org/10.1523/JNEUROSCI.2978-14.2015
https://doi.org/10.1523/JNEUROSCI.2978-14.2015
https://doi.org/10.1523/JNEUROSCI.2978-14.2015
https://doi.org/10.1523/JNEUROSCI.2978-14.2015
https://doi.org/10.1523/JNEUROSCI.2978-14.2015
https://doi.org/10.1523/JNEUROSCI.2978-14.2015
https://pubmed.ncbi.nlm.nih.gov/26019331
https://doi.org/10.1016/j.bbr.2017.10.010
https://doi.org/10.1016/j.bbr.2017.10.010
https://doi.org/10.1016/j.bbr.2017.10.010
https://doi.org/10.1016/j.bbr.2017.10.010
https://doi.org/10.1016/j.bbr.2017.10.010
https://doi.org/10.1016/j.bbr.2017.10.010
https://doi.org/10.1016/j.bbr.2017.10.010
https://doi.org/10.1016/j.bbr.2017.10.010
https://doi.org/10.1016/j.bbr.2017.10.010
https://doi.org/10.1016/j.bbr.2017.10.010
https://doi.org/10.1016/j.bbr.2017.10.010
https://pubmed.ncbi.nlm.nih.gov/29042157
https://doi.org/10.1038/s41467-018-08184-9
https://doi.org/10.1038/s41467-018-08184-9
https://doi.org/10.1038/s41467-018-08184-9
https://doi.org/10.1038/s41467-018-08184-9
https://doi.org/10.1038/s41467-018-08184-9
https://doi.org/10.1038/s41467-018-08184-9
https://doi.org/10.1038/s41467-018-08184-9
https://doi.org/10.1038/s41467-018-08184-9
https://doi.org/10.1038/s41467-018-08184-9
https://doi.org/10.1038/s41467-018-08184-9
https://pubmed.ncbi.nlm.nih.gov/30635579
https://doi.org/10.1901/jeab.2006.71-05
https://doi.org/10.1901/jeab.2006.71-05
https://doi.org/10.1901/jeab.2006.71-05
https://doi.org/10.1901/jeab.2006.71-05
https://doi.org/10.1901/jeab.2006.71-05
https://doi.org/10.1901/jeab.2006.71-05
https://doi.org/10.1901/jeab.2006.71-05
https://doi.org/10.1901/jeab.2006.71-05
https://doi.org/10.1901/jeab.2006.71-05
https://doi.org/10.1901/jeab.2006.71-05
https://pubmed.ncbi.nlm.nih.gov/16776053
https://doi.org/10.1007/BF00140873
https://doi.org/10.1007/BF00140873
https://doi.org/10.1007/BF00140873
https://doi.org/10.1007/BF00140873
https://doi.org/10.1007/BF00140873
https://doi.org/10.1007/BF00140873
https://doi.org/10.1007/BF00140873
https://doi.org/10.1007/BF00140873
https://doi.org/10.1016/S0028-3932(02)00157-4
https://doi.org/10.1016/S0028-3932(02)00157-4
https://doi.org/10.1016/S0028-3932(02)00157-4
https://doi.org/10.1016/S0028-3932(02)00157-4
https://doi.org/10.1016/S0028-3932(02)00157-4
https://doi.org/10.1016/S0028-3932(02)00157-4
https://doi.org/10.1016/S0028-3932(02)00157-4
https://doi.org/10.1016/S0028-3932(02)00157-4
https://doi.org/10.1016/S0028-3932(02)00157-4
https://pubmed.ncbi.nlm.nih.gov/12457750
https://doi.org/10.1037/pag0000112
https://doi.org/10.1037/pag0000112
https://doi.org/10.1037/pag0000112
https://doi.org/10.1037/pag0000112
https://doi.org/10.1037/pag0000112
https://doi.org/10.1037/pag0000112
https://doi.org/10.1037/pag0000112
https://pubmed.ncbi.nlm.nih.gov/27599017
https://doi.org/10.1016/j.tics.2019.01.010
https://doi.org/10.1016/j.tics.2019.01.010
https://doi.org/10.1016/j.tics.2019.01.010
https://doi.org/10.1016/j.tics.2019.01.010
https://doi.org/10.1016/j.tics.2019.01.010
https://doi.org/10.1016/j.tics.2019.01.010
https://doi.org/10.1016/j.tics.2019.01.010
https://doi.org/10.1016/j.tics.2019.01.010
https://doi.org/10.1016/j.tics.2019.01.010
https://doi.org/10.1016/j.tics.2019.01.010
https://doi.org/10.1016/j.tics.2019.01.010
https://pubmed.ncbi.nlm.nih.gov/30824227
https://doi.org/10.1016/j.cobeha.2020.10.003
https://doi.org/10.1016/j.cobeha.2020.10.003
https://doi.org/10.1016/j.cobeha.2020.10.003
https://doi.org/10.1016/j.cobeha.2020.10.003
https://doi.org/10.1016/j.cobeha.2020.10.003
https://doi.org/10.1016/j.cobeha.2020.10.003
https://doi.org/10.1016/j.cobeha.2020.10.003
https://doi.org/10.1016/j.cobeha.2020.10.003
https://doi.org/10.1016/j.cobeha.2020.10.003
https://doi.org/10.1016/j.cobeha.2020.10.003
https://doi.org/10.1016/j.cobeha.2020.10.003
https://doi.org/10.1016/j.cobeha.2020.10.003
https://doi.org/10.1038/nrn.2018.6
https://doi.org/10.1038/nrn.2018.6
https://doi.org/10.1038/nrn.2018.6
https://doi.org/10.1038/nrn.2018.6
https://doi.org/10.1038/nrn.2018.6
https://doi.org/10.1038/nrn.2018.6
https://doi.org/10.1038/nrn.2018.6
https://doi.org/10.1038/nrn.2018.6
https://doi.org/10.1038/nrn.2018.6
https://pubmed.ncbi.nlm.nih.gov/29449713
https://doi.org/10.1371/journal.pcbi.1004060
https://doi.org/10.1371/journal.pcbi.1004060
https://doi.org/10.1371/journal.pcbi.1004060
https://doi.org/10.1371/journal.pcbi.1004060
https://doi.org/10.1371/journal.pcbi.1004060
https://doi.org/10.1371/journal.pcbi.1004060
https://doi.org/10.1371/journal.pcbi.1004060
https://doi.org/10.1371/journal.pcbi.1004060
https://doi.org/10.1371/journal.pcbi.1004060
https://pubmed.ncbi.nlm.nih.gov/25742003
https://doi.org/10.1037/bul0000296
https://doi.org/10.1037/bul0000296
https://doi.org/10.1037/bul0000296
https://doi.org/10.1037/bul0000296
https://doi.org/10.1037/bul0000296
https://doi.org/10.1037/bul0000296
https://doi.org/10.1037/bul0000296
https://doi.org/10.1037/bul0000296
https://pubmed.ncbi.nlm.nih.gov/32686948
https://doi.org/10.1523/JNEUROSCI.2496-07.2007
https://doi.org/10.1523/JNEUROSCI.2496-07.2007
https://doi.org/10.1523/JNEUROSCI.2496-07.2007
https://doi.org/10.1523/JNEUROSCI.2496-07.2007
https://doi.org/10.1523/JNEUROSCI.2496-07.2007
https://doi.org/10.1523/JNEUROSCI.2496-07.2007
https://doi.org/10.1523/JNEUROSCI.2496-07.2007
https://doi.org/10.1523/JNEUROSCI.2496-07.2007
https://doi.org/10.1523/JNEUROSCI.2496-07.2007
https://doi.org/10.1523/JNEUROSCI.2496-07.2007
https://doi.org/10.1523/JNEUROSCI.2496-07.2007
https://pubmed.ncbi.nlm.nih.gov/18032658
https://doi.org/10.1101/lm.4.5.421
https://doi.org/10.1101/lm.4.5.421
https://doi.org/10.1101/lm.4.5.421
https://doi.org/10.1101/lm.4.5.421
https://doi.org/10.1101/lm.4.5.421
https://doi.org/10.1101/lm.4.5.421
https://doi.org/10.1101/lm.4.5.421
https://doi.org/10.1101/lm.4.5.421
https://doi.org/10.1101/lm.4.5.421
https://doi.org/10.1101/lm.4.5.421
https://doi.org/10.1101/lm.4.5.421
https://pubmed.ncbi.nlm.nih.gov/10701881


Seo, H., Cai, X., Donahue, C. H., & Lee, D. (2014). Neural
correlates of strategic reasoning during competitive games.
Science, 346, 340–343. https://doi.org/10.1126/science
.1256254, PubMed: 25236468

Soltani, A., & Izquierdo, A. (2019). Adaptive learning under
expected and unexpected uncertainty. Nature Reviews
Neuroscience, 20, 635–644. https://doi.org/10.1038/s41583-019
-0180-y, PubMed: 31147631

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning:
An introduction (2nd ed.). Cambridge, MA: MIT Press.

Taswell, C. A., Costa, V. D., Murray, E. A., & Averbeck, B. B.
(2018). Ventral striatum’s role in learning from gains and
losses. Proceedings of the National Academy of Sciences,
U.S.A., 115, E12398–E12406. https://doi.org/10.1073/pnas
.1809833115, PubMed: 30545910

Tomov, M. S., Truong, V. Q., Hundia, R. A., & Gershman, S. J.
(2020). Dissociable neural correlates of uncertainty underlie
different exploration strategies. Nature Communications,
11, 2371. https://doi.org/10.1038/s41467-020-15766-z,
PubMed: 32398675

van den Bos, W., Cohen, M. X., Kahnt, T., & Crone, E. A. (2012).
Striatum–medial prefrontal cortex connectivity predicts
developmental changes in reinforcement learning. Cerebral
Cortex, 22, 1247–1255. https://doi.org/10.1093/cercor
/bhr198, PubMed: 21817091

van der Meer, M., Kurth-Nelson, Z., & Redish, A. D. (2012).
Information processing in decision-making systems.
Neuroscientist, 18, 342–359. https://doi.org/10.1177
/1073858411435128, PubMed: 22492194

Viejo, G., Girard, B., Procyk, E., & Khamassi, M. (2018). Adaptive
coordination of working-memory and reinforcement learning
in non-human primates performing a trial-and-error problem
solving task. Behavioural Brain Research, 355, 76–89. https://
doi.org/10.1016/j.bbr.2017.09.030, PubMed: 29061387

Viejo, G., Khamassi, M., Brovelli, A., & Girard, B. (2015).
Modeling choice and reaction time during arbitrary
visuomotor learning through the coordination of adaptive
working memory and reinforcement learning. Frontiers in
Behavioral Neuroscience, 9, 225. https://doi.org/10.3389
/fnbeh.2015.00225, PubMed: 26379518

Voloh, B., Watson, M. R., König, S., & Womelsdorf, T. (2020).
MAD saccade: Statistically robust saccade threshold
estimation via the median absolute deviation. Journal of
Eye Movement Research, 12. https://doi.org/10.16910/jemr
.12.8.3, PubMed: 33828776

Wagenmakers, E.-J., & Farrell, S. (2004). AIC model selection
using Akaike weights. Psychonomic Bulletin & Review, 11,

192–196. https://doi.org/10.3758/BF03206482, PubMed:
15117008

Wang, J. X., Kurth-Nelson, Z., Kumaran, D., Tirumala, D., Soyer,
H., Leibo, J. Z., et al. (2018). Prefrontal cortex as a meta-
reinforcement learning system. Nature Neuroscience, 21,
860–868. https://doi.org/10.1038/s41593-018-0147-8, PubMed:
29760527

Watson, M. R., Voloh, B., Naghizadeh, M., & Womelsdorf, T.
(2019). Quaddles: A multidimensional 3-D object set with
parametrically controlled and customizable features.
Behavior Research Methods, 51, 2522–2532. https://doi.org
/10.3758/s13428-018-1097-5, PubMed: 30088255

Watson, M. R., Voloh, B., Thomas, C., Hasan, A., &
Womelsdorf, T. (2019). USE: An integrative suite for
temporally-precise psychophysical experiments in virtual
environments for human, nonhuman, and artificially
intelligent agents. Journal of Neuroscience Methods, 326,
108374. https://doi.org/10.1016/j.jneumeth.2019.108374,
PubMed: 31351974

Westendorff, S., Kaping, D., Everling, S., & Womelsdorf, T.
(2016). Prefrontal and anterior cingulate cortex neurons
encode attentional targets even when they do not
apparently bias behavior. Journal of Neurophysiology, 116,
796–811. https://doi.org/10.1152/jn.00027.2016, PubMed:
27193317

Wilson, R. C., & Collins, A. G. E. (2019). Ten simple rules for the
computational modeling of behavioral data. eLife, 8, e49547.
https://doi.org/10.7554/eLife.49547, PubMed: 31769410

Wilson, R. C., & Niv, Y. (2011). Inferring relevance in a changing
world. Frontiers in Human Neuroscience, 5, 189. https://doi
.org/10.3389/fnhum.2011.00189, PubMed: 22291631

Womelsdorf, T., & Everling, S. (2015). Long-range attention
networks: Circuit motifs underlying endogenously controlled
stimulus selection. Trends in Neurosciences, 38, 682–700.
https://doi.org/10.1016/j.tins.2015.08.009, PubMed:
26549883

Womelsdorf, T., Thomas, C., Neumann, A., Watson, M. R.,
Boroujeni Banaie, K., Hassani, S. A., et al. (2021). A Kiosk
Station for the assessment of multiple cognitive domains and
cognitve enrichment of monkeys. Frontiers in Behavioral
Neuroscience, 15, 721069. https://doi.org/10.3389/fnbeh
.2021.721069, PubMed: 34512289

Worthy, D. A., Otto, A. R., & Maddox, W. T. (2012). Working-
memory load and temporal myopia in dynamic decision
making. Journal of Experimental Psychology: Learning,
Memory, and Cognition, 38, 1640–1658. https://doi.org/10
.1037/a0028146, PubMed: 22545616

Womelsdorf, Watson, and Tiesinga 107

D
ow

nloaded from
 http://direct.m

it.edu/jocn/article-pdf/34/1/79/2007813/jocn_a_01780.pdf by D
ELETE York U

niversity user on 16 M
arch 2023

https://doi.org/10.1126/science.1256254
https://doi.org/10.1126/science.1256254
https://doi.org/10.1126/science.1256254
https://doi.org/10.1126/science.1256254
https://doi.org/10.1126/science.1256254
https://doi.org/10.1126/science.1256254
https://doi.org/10.1126/science.1256254
https://doi.org/10.1126/science.1256254
https://pubmed.ncbi.nlm.nih.gov/25236468
https://doi.org/10.1038/s41583-019-0180-y
https://doi.org/10.1038/s41583-019-0180-y
https://doi.org/10.1038/s41583-019-0180-y
https://doi.org/10.1038/s41583-019-0180-y
https://doi.org/10.1038/s41583-019-0180-y
https://doi.org/10.1038/s41583-019-0180-y
https://doi.org/10.1038/s41583-019-0180-y
https://doi.org/10.1038/s41583-019-0180-y
https://doi.org/10.1038/s41583-019-0180-y
https://doi.org/10.1038/s41583-019-0180-y
https://pubmed.ncbi.nlm.nih.gov/31147631
https://doi.org/10.1073/pnas.1809833115
https://doi.org/10.1073/pnas.1809833115
https://doi.org/10.1073/pnas.1809833115
https://doi.org/10.1073/pnas.1809833115
https://doi.org/10.1073/pnas.1809833115
https://doi.org/10.1073/pnas.1809833115
https://doi.org/10.1073/pnas.1809833115
https://doi.org/10.1073/pnas.1809833115
https://pubmed.ncbi.nlm.nih.gov/30545910
https://doi.org/10.1038/s41467-020-15766-z
https://doi.org/10.1038/s41467-020-15766-z
https://doi.org/10.1038/s41467-020-15766-z
https://doi.org/10.1038/s41467-020-15766-z
https://doi.org/10.1038/s41467-020-15766-z
https://doi.org/10.1038/s41467-020-15766-z
https://doi.org/10.1038/s41467-020-15766-z
https://doi.org/10.1038/s41467-020-15766-z
https://doi.org/10.1038/s41467-020-15766-z
https://doi.org/10.1038/s41467-020-15766-z
https://pubmed.ncbi.nlm.nih.gov/32398675
https://doi.org/10.1093/cercor/bhr198
https://doi.org/10.1093/cercor/bhr198
https://doi.org/10.1093/cercor/bhr198
https://doi.org/10.1093/cercor/bhr198
https://doi.org/10.1093/cercor/bhr198
https://doi.org/10.1093/cercor/bhr198
https://doi.org/10.1093/cercor/bhr198
https://doi.org/10.1093/cercor/bhr198
https://doi.org/10.1093/cercor/bhr198
https://pubmed.ncbi.nlm.nih.gov/21817091
https://doi.org/10.1177/1073858411435128
https://doi.org/10.1177/1073858411435128
https://doi.org/10.1177/1073858411435128
https://doi.org/10.1177/1073858411435128
https://doi.org/10.1177/1073858411435128
https://doi.org/10.1177/1073858411435128
https://doi.org/10.1177/1073858411435128
https://pubmed.ncbi.nlm.nih.gov/22492194
https://doi.org/10.1016/j.bbr.2017.09.030
https://doi.org/10.1016/j.bbr.2017.09.030
https://doi.org/10.1016/j.bbr.2017.09.030
https://doi.org/10.1016/j.bbr.2017.09.030
https://doi.org/10.1016/j.bbr.2017.09.030
https://doi.org/10.1016/j.bbr.2017.09.030
https://doi.org/10.1016/j.bbr.2017.09.030
https://doi.org/10.1016/j.bbr.2017.09.030
https://doi.org/10.1016/j.bbr.2017.09.030
https://doi.org/10.1016/j.bbr.2017.09.030
https://doi.org/10.1016/j.bbr.2017.09.030
https://doi.org/10.1016/j.bbr.2017.09.030
https://pubmed.ncbi.nlm.nih.gov/29061387
https://doi.org/10.3389/fnbeh.2015.00225
https://doi.org/10.3389/fnbeh.2015.00225
https://doi.org/10.3389/fnbeh.2015.00225
https://doi.org/10.3389/fnbeh.2015.00225
https://doi.org/10.3389/fnbeh.2015.00225
https://doi.org/10.3389/fnbeh.2015.00225
https://doi.org/10.3389/fnbeh.2015.00225
https://doi.org/10.3389/fnbeh.2015.00225
https://doi.org/10.3389/fnbeh.2015.00225
https://pubmed.ncbi.nlm.nih.gov/26379518
https://doi.org/10.16910/jemr.12.8.3
https://doi.org/10.16910/jemr.12.8.3
https://doi.org/10.16910/jemr.12.8.3
https://doi.org/10.16910/jemr.12.8.3
https://doi.org/10.16910/jemr.12.8.3
https://doi.org/10.16910/jemr.12.8.3
https://doi.org/10.16910/jemr.12.8.3
https://doi.org/10.16910/jemr.12.8.3
https://doi.org/10.16910/jemr.12.8.3
https://doi.org/10.16910/jemr.12.8.3
https://pubmed.ncbi.nlm.nih.gov/33828776
https://doi.org/10.3758/BF03206482
https://doi.org/10.3758/BF03206482
https://doi.org/10.3758/BF03206482
https://doi.org/10.3758/BF03206482
https://doi.org/10.3758/BF03206482
https://doi.org/10.3758/BF03206482
https://doi.org/10.3758/BF03206482
https://doi.org/10.3758/BF03206482
https://pubmed.ncbi.nlm.nih.gov/15117008
https://doi.org/10.1038/s41593-018-0147-8
https://doi.org/10.1038/s41593-018-0147-8
https://doi.org/10.1038/s41593-018-0147-8
https://doi.org/10.1038/s41593-018-0147-8
https://doi.org/10.1038/s41593-018-0147-8
https://doi.org/10.1038/s41593-018-0147-8
https://doi.org/10.1038/s41593-018-0147-8
https://doi.org/10.1038/s41593-018-0147-8
https://doi.org/10.1038/s41593-018-0147-8
https://doi.org/10.1038/s41593-018-0147-8
https://pubmed.ncbi.nlm.nih.gov/29760527
https://doi.org/10.3758/s13428-018-1097-5
https://doi.org/10.3758/s13428-018-1097-5
https://doi.org/10.3758/s13428-018-1097-5
https://doi.org/10.3758/s13428-018-1097-5
https://doi.org/10.3758/s13428-018-1097-5
https://doi.org/10.3758/s13428-018-1097-5
https://doi.org/10.3758/s13428-018-1097-5
https://doi.org/10.3758/s13428-018-1097-5
https://doi.org/10.3758/s13428-018-1097-5
https://doi.org/10.3758/s13428-018-1097-5
https://pubmed.ncbi.nlm.nih.gov/30088255
https://doi.org/10.1016/j.jneumeth.2019.108374
https://doi.org/10.1016/j.jneumeth.2019.108374
https://doi.org/10.1016/j.jneumeth.2019.108374
https://doi.org/10.1016/j.jneumeth.2019.108374
https://doi.org/10.1016/j.jneumeth.2019.108374
https://doi.org/10.1016/j.jneumeth.2019.108374
https://doi.org/10.1016/j.jneumeth.2019.108374
https://doi.org/10.1016/j.jneumeth.2019.108374
https://doi.org/10.1016/j.jneumeth.2019.108374
https://doi.org/10.1016/j.jneumeth.2019.108374
https://pubmed.ncbi.nlm.nih.gov/31351974
https://doi.org/10.1152/jn.00027.2016
https://doi.org/10.1152/jn.00027.2016
https://doi.org/10.1152/jn.00027.2016
https://doi.org/10.1152/jn.00027.2016
https://doi.org/10.1152/jn.00027.2016
https://doi.org/10.1152/jn.00027.2016
https://doi.org/10.1152/jn.00027.2016
https://doi.org/10.1152/jn.00027.2016
https://doi.org/10.1152/jn.00027.2016
https://pubmed.ncbi.nlm.nih.gov/27193317
https://doi.org/10.7554/eLife.49547
https://doi.org/10.7554/eLife.49547
https://doi.org/10.7554/eLife.49547
https://doi.org/10.7554/eLife.49547
https://doi.org/10.7554/eLife.49547
https://doi.org/10.7554/eLife.49547
https://doi.org/10.7554/eLife.49547
https://doi.org/10.7554/eLife.49547
https://pubmed.ncbi.nlm.nih.gov/31769410
https://doi.org/10.3389/fnhum.2011.00189
https://doi.org/10.3389/fnhum.2011.00189
https://doi.org/10.3389/fnhum.2011.00189
https://doi.org/10.3389/fnhum.2011.00189
https://doi.org/10.3389/fnhum.2011.00189
https://doi.org/10.3389/fnhum.2011.00189
https://doi.org/10.3389/fnhum.2011.00189
https://doi.org/10.3389/fnhum.2011.00189
https://doi.org/10.3389/fnhum.2011.00189
https://pubmed.ncbi.nlm.nih.gov/22291631
https://doi.org/10.1016/j.tins.2015.08.009
https://doi.org/10.1016/j.tins.2015.08.009
https://doi.org/10.1016/j.tins.2015.08.009
https://doi.org/10.1016/j.tins.2015.08.009
https://doi.org/10.1016/j.tins.2015.08.009
https://doi.org/10.1016/j.tins.2015.08.009
https://doi.org/10.1016/j.tins.2015.08.009
https://doi.org/10.1016/j.tins.2015.08.009
https://doi.org/10.1016/j.tins.2015.08.009
https://doi.org/10.1016/j.tins.2015.08.009
https://doi.org/10.1016/j.tins.2015.08.009
https://pubmed.ncbi.nlm.nih.gov/26549883
https://doi.org/10.3389/fnbeh.2021.721069
https://doi.org/10.3389/fnbeh.2021.721069
https://doi.org/10.3389/fnbeh.2021.721069
https://doi.org/10.3389/fnbeh.2021.721069
https://doi.org/10.3389/fnbeh.2021.721069
https://doi.org/10.3389/fnbeh.2021.721069
https://doi.org/10.3389/fnbeh.2021.721069
https://doi.org/10.3389/fnbeh.2021.721069
https://doi.org/10.3389/fnbeh.2021.721069
https://pubmed.ncbi.nlm.nih.gov/34512289
https://doi.org/10.1037/a0028146
https://doi.org/10.1037/a0028146
https://doi.org/10.1037/a0028146
https://doi.org/10.1037/a0028146
https://doi.org/10.1037/a0028146
https://doi.org/10.1037/a0028146
https://doi.org/10.1037/a0028146
https://pubmed.ncbi.nlm.nih.gov/22545616

